Your browser doesn't support javascript.
loading
Advanced MXene-based materials for efficient extraction of uranium from seawater and wastewater.
Zhu, Jiahui; Wang, Jing; Liu, Qi; Yu, Jing; Liu, Jingyuan; Chen, Rongrong; Song, Dalei; Li, Rumin; Wang, Jun.
Afiliação
  • Zhu J; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry
  • Wang J; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry
  • Liu Q; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Rese
  • Yu J; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry
  • Liu J; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry
  • Chen R; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry
  • Song D; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry
  • Li R; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry
  • Wang J; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry
Sci Total Environ ; 942: 173755, 2024 Sep 10.
Article em En | MEDLINE | ID: mdl-38851336
ABSTRACT
In order to realize the low-carbon development policy, the large-scale development and utilization of nuclear energy is very essential. Uranium is the key resource for nuclear industry. The extracting and recycling uranium from seawater and nuclear wastewater is necessary for secure uranium reserves, ensure energy security, control pollution and protect the environment. The novel nanomaterial MXene possesses the layered structure, high specific surface area, and modifiable surface terminal groups, which allowed it to enrich uranium. In addition, good photovoltaic and photothermal properties improves the ability to adsorb uranium. The excellent radiation resistance of the MAX phase strongly indicates the potential use of MXene as an effective uranium adsorbent. However, there are relatively few reviews on its application in uranium extraction and recovery. This review focuses on the recent advances in the use of MXene-based materials as highly efficient adsorbents for the recovery of uranium from seawater and nuclear wastewater. First, the structural, synthetic and characterization aspects of MXene materials are introduced. Subsequently, the adsorptive properties of MXene-based materials are evaluated in terms of uranium extraction recovery capability, selectivity, and reproducibility. Furthermore, the interaction mechanisms between uranium and MXene absorbers are discussed. Finally, the challenges for MXene materials in uranium adsorption applications are proposed for better design of new types of MXene-based adsorbents.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article
...