Your browser doesn't support javascript.
loading
Differential impacts of polyethylene microplastic and additives on soil nitrogen cycling: A deeper dive into microbial interactions and transformation mechanisms.
Zhou, Zhidong; Hua, Jianfeng; Xue, Jianhui; Yu, Chaoguang.
Afiliação
  • Zhou Z; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China.
  • Hua J; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China. Electronic address: jfhua@cnbg.net.
  • Xue J; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; College of Biology and the Environment, Nanjing Forestry Univers
  • Yu C; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China.
Sci Total Environ ; 942: 173771, 2024 Sep 10.
Article em En | MEDLINE | ID: mdl-38851351
ABSTRACT
The impact of microplastics and their additives on soil nutrient cycling, particularly through microbial mechanisms, remains underexplored. This study investigated the effects of polyethylene microplastics, polyethylene resin, and plastic additives on soil nitrogen content, physicochemical properties, nitrogen cycling functional genes, microbial composition, and nitrogen transformation rates. Results showed that all amendments increased total nitrogen but decreased dissolved total nitrogen. Polyethylene microplastics and additives increased dissolved organic nitrogen, while polyethylene resin reduced it and exhibited higher microbial biomass. Amendments reduced or did not change inorganic nitrogen levels, with additives showing the lowest values. Polyethylene resin favored microbial nitrogen immobilization, while additives were more inhibitory. Amendment type and content significantly interacted with nitrogen cycling genes and microbial composition. Distinct functional microbial biomarkers and network structures were identified for different amendments. Polyethylene microplastics had higher gross ammonification, nitrification, and immobilization rates, followed by polyethylene resin and additives. Nitrogen transformation was driven by multiple functional genes, with Proteobacteria playing a significant role. Soil physicochemical properties affected nitrogen content through transformation rates, with C/N ratio having an indirect effect and water holding capacity directly impacting it. In summary, plastic additives, compared to polyethylene microplastics and resin, are less conducive to nitrogen degradation and microbial immobilization, exert significant effects on microbial community structure, inhibit transformation rates, and ultimately impact nitrogen cycling.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Microbiologia do Solo / Poluentes do Solo / Polietileno / Ciclo do Nitrogênio / Microplásticos / Nitrogênio Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Microbiologia do Solo / Poluentes do Solo / Polietileno / Ciclo do Nitrogênio / Microplásticos / Nitrogênio Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...