Your browser doesn't support javascript.
loading
Real time organ hypoperfusion detection using Indocyanine Green in a piglet model.
Oppermann, Carolin; Dohrn, Niclas; Pardes, Helin Yikilmaz; Klein, Mads Falk; Eriksen, Thomas; Gögenur, Ismail.
Afiliação
  • Oppermann C; Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark. caopp@regionsjaelland.dk.
  • Dohrn N; Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark.
  • Pardes HY; Department of Surgery, Copenhagen University Hospital, Herlev & Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
  • Klein MF; Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark.
  • Eriksen T; Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark.
  • Gögenur I; Institute for Clinical Veterinary Medicine, University of Copenhagen, Dyrelægevej 16, 1870, Frederiksberg C, Denmark.
Surg Endosc ; 38(8): 4296-4305, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38869642
ABSTRACT

BACKGROUND:

Preserving sufficient oxygen supply to the tissue is fundamental for maintaining organ function. However, our ability to identify those at risk and promptly recognize tissue hypoperfusion during abdominal surgery is limited. To address this problem, we aimed to develop a new method of perfusion monitoring that can be used during surgical procedures and aid surgeons' decision-making.

METHODS:

In this experimental porcine study, thirteen subjects were randomly assigned one organ of interest [stomach (n = 3), ascending colon (n = 3), rectum (n = 3), and spleen (n = 3)]. After baseline perfusion recordings, using high-frequency, low-dose bolus injections with weight-adjusted (0.008 mg/kg) ICG, organ-supplying arteries were manually and completely occluded leading to hypoperfusion of the target organ. Continuous organ perfusion monitoring was performed throughout the experimental conditions.

RESULTS:

After manual occlusion of pre-selected organ-supplying arteries, occlusion of the peripheral arterial supply translated in an immediate decrease in oscillation signal in most organs (3/3 ventricle, 3/3 ascending colon, 3/3 rectum, 2/3 spleen). Occlusion of the central arterial supply resulted in a further decrease or complete disappearance of the oscillation curves in the ventricle (3/3), ascending colon (3/3), rectum (3/3), and spleen (1/3).

CONCLUSION:

Continuous organ-perfusion monitoring using a high-frequency, low-dose ICG bolus regimen can detect organ hypoperfusion in real-time.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Corantes / Verde de Indocianina Limite: Animals Idioma: En Revista: Surg Endosc / Surg. endosc / Surgical endoscopy Assunto da revista: DIAGNOSTICO POR IMAGEM / GASTROENTEROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Corantes / Verde de Indocianina Limite: Animals Idioma: En Revista: Surg Endosc / Surg. endosc / Surgical endoscopy Assunto da revista: DIAGNOSTICO POR IMAGEM / GASTROENTEROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Dinamarca
...