Tumor-Derived Exosomal miR-143-3p Induces Macrophage M2 Polarization to Cause Radiation Resistance in Locally Advanced Esophageal Squamous Cell Carcinoma.
Int J Mol Sci
; 25(11)2024 May 31.
Article
em En
| MEDLINE
| ID: mdl-38892269
ABSTRACT
We aimed to determine whether monitoring tumor-derived exosomal microRNAs (miRNAs) could be used to assess radiotherapeutic sensitivity in patients with locally advanced esophageal squamous cell carcinoma (ESCC). RNA sequencing was employed to conduct a comparative analysis of miRNA expression levels during radiotherapy, focusing on identifying miRNAs associated with progression. Electron microscopy confirmed the existence of exosomes, and co-cultivation assays and immunofluorescence validated their capacity to infiltrate macrophages. To determine the mechanism by which exosomal miR-143-3p regulates the interplay between ESCC cells and M2 macrophages, ESCC cell-derived exosomes were co-cultured with macrophages. Serum miR-143-3p and miR-223-3p were elevated during radiotherapy, suggesting resistance to radiation and an unfavorable prognosis for ESCC. Increased levels of both miRNAs independently predicted shorter progression-free survival (p = 0.015). We developed a diagnostic model for ESCC using serum microRNAs, resulting in an area under the curve of 0.751. Radiotherapy enhanced the release of miR-143-3p from ESCC cell-derived exosomes. Immune cell infiltration analysis at the Cancer Genome Atlas (TCGA) database revealed that ESCC cell-derived miR-143-3p triggered M2 macrophage polarization. Mechanistically, miR-143-3p upregulation affected chemokine activity and cytokine signaling pathways. Furthermore, ESCC cell exosomal miR-143-3p could be transferred to macrophages, thereby promoting their polarization. Serum miR-143-3p and miR-223-3p could represent diagnostic and prognostic markers for patients with ESCC undergoing radiotherapy. Unfavorable prognosis could be linked to the increased levels of ESCC cell-derived exosomal miR-143-3p, which might promote tumor progression by interacting with macrophages.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Tolerância a Radiação
/
Neoplasias Esofágicas
/
Regulação Neoplásica da Expressão Gênica
/
MicroRNAs
/
Exossomos
/
Carcinoma de Células Escamosas do Esôfago
/
Macrófagos
Limite:
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Int J Mol Sci
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China