Your browser doesn't support javascript.
loading
Pyramiding of triple Clubroot resistance loci conferred superior resistance without negative effects on agronomic traits in Brassica napus.
Baloch, Amanullah; Shah, Nadil; Idrees, Fahad; Zhou, Xueqing; Gan, Longcai; Atem, Jalal Eldeen Chol; Zhou, Yuanwei; Piao, Zhongyun; Chen, Peng; Zhan, Zongxiang; Zhang, Chunyu.
Afiliação
  • Baloch A; National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Shah N; National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Idrees F; National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Zhou X; National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Gan L; National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Atem JEC; National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Zhou Y; Yichang Academy of Agricultural Science, Yichang, China.
  • Piao Z; Shenyang Agricultural University, Shenyang, China.
  • Chen P; National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Zhan Z; Shenyang Agricultural University, Shenyang, China.
  • Zhang C; National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Physiol Plant ; 176(4): e14414, 2024.
Article em En | MEDLINE | ID: mdl-38956798
ABSTRACT
Clubroot disease caused by Plasmodiophora brassicae is becoming a serious threat to rapeseed (Brassica napus) production worldwide. Breeding resistant varieties using CR (clubroot resistance) loci is the most promising solution. Using marker-assisted selection and speed-breeding technologies, we generated Brassica napus materials in homozygous or heterozygous states using CRA3.7, CRA08.1, and CRA3.2 loci in the elite parental line of the Zhongshuang11 background. We developed three elite lines with two CR loci in different combinations and one line with three CR loci at the homozygous state. In our study, we used six different clubroot strains (Xinmin, Lincang, Yuxi, Chengdu, Chongqing, and Jixi) which are categorized into three groups based on our screening results. The newly pyramided lines with two or more CR loci displayed better disease resistance than the parental lines carrying single CR loci. There is an obvious gene dosage effect between CR loci and disease resistance levels. For example, pyramided lines with triple CR loci in the homozygous state showed superior resistance for all pathogens tested. Moreover, CR loci in the homozygous state are better on disease resistance than the heterozygous state. More importantly, no negative effect was observed on agronomic traits for the presence of multiple CR loci in the same background. Overall, these data suggest that the pyramiding of triple clubroot resistance loci conferred superior resistance with no negative effects on agronomic traits in Brassica napus.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Brassica napus / Plasmodioforídeos / Resistência à Doença Idioma: En Revista: Physiol Plant Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Brassica napus / Plasmodioforídeos / Resistência à Doença Idioma: En Revista: Physiol Plant Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...