Your browser doesn't support javascript.
loading
A telomere-to-telomere gap-free reference genome assembly of avocado provides useful resources for identifying genes related to fatty acid biosynthesis and disease resistance.
Yang, Tianyu; Cai, Yifan; Huang, Tianping; Yang, Danni; Yang, Xingyu; Yin, Xin; Zhang, Chengjun; Yang, Yunqiang; Yang, Yongping.
Afiliação
  • Yang T; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
  • Cai Y; Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
  • Huang T; School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China.
  • Yang D; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Yang X; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
  • Yin X; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
  • Zhang C; Center of Gardening & Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
  • Yang Y; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
  • Yang Y; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
Hortic Res ; 11(7): uhae119, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38966866
ABSTRACT
Avocado (Persea americana Mill.) is an economically valuable plant because of the high fatty acid content and unique flavor of its fruits. Its fatty acid content, especially the relatively high unsaturated fatty acid content, provides significant health benefits. We herein present a telomere-to-telomere gapless genome assembly (841.6 Mb) of West Indian avocado. The genome contains 40 629 predicted protein-coding genes. Repeat sequences account for 57.9% of the genome. Notably, all telomeres, centromeres, and a nucleolar organizing region are included in this genome. Fragments from these three regions were observed via fluorescence in situ hybridization. We identified 376 potential disease resistance-related nucleotide-binding leucine-rich repeat genes. These genes, which are typically clustered on chromosomes, may be derived from gene duplication events. Five NLR genes (Pa11g0262, Pa02g4855, Pa07g3139, Pa07g0383, and Pa02g3196) were highly expressed in leaves, stems, and fruits, indicating they may be involved in avocado disease responses in multiple tissues. We also identified 128 genes associated with fatty acid biosynthesis and analyzed their expression patterns in leaves, stems, and fruits. Pa02g0113, which encodes one of 11 stearoyl-acyl carrier protein desaturases mediating C18 unsaturated fatty acid synthesis, was more highly expressed in the leaves than in the stems and fruits. These findings provide valuable insights that enhance our understanding of fatty acid biosynthesis in avocado.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Hortic Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Hortic Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...