Your browser doesn't support javascript.
loading
Direct evidence for the occurrence of indigenous cadmium-based nanoparticles in paddy soils.
Zhou, Xiaoxia; Xiao, Quanzhi; Deng, Youwei; Hou, Xianfeng; Fang, Liping; Zhou, Yanfei; Li, Fangbai.
Afiliação
  • Zhou X; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in
  • Xiao Q; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
  • Deng Y; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
  • Hou X; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Fang L; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Zhou Y; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China. Electronic address: yanfei-zhou@hotmail.com.
  • Li F; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
Sci Total Environ ; 947: 174621, 2024 Oct 15.
Article em En | MEDLINE | ID: mdl-38986703
ABSTRACT
Speciation of heavy metal-based nanoparticles (NPs) in paddy soils greatly determines their fate and potential risk towards food safety. However, quantitative understanding of such distinctive species remains challenging, because they are commonly presented at trace levels (e.g., sub parts-per-million) and extremely difficult to be fractionated in soil matrices. Herein, we propose a state-of-art non-destructive strategy for effective extraction and quantification of cadmium (Cd)-NPs - the most widespread heavy metal in paddy soils - by employing single particle inductively coupled plasma mass spectrometry (spICP-MS) and tetrasodium pyrophosphate (TSPP) as the extractant. Acceptable extraction efficiencies (64.7-80.4 %) were obtained for spiked cadmium sulfide nanoparticles (CdS-NPs). We demonstrate the presence of indigenous Cd-NPs in all six Cd-contaminated paddy soils tested, with a number concentration ranging from 2.20 × 108 to 3.18 × 109 particles/g, representing 17.0-50.4 % of the total Cd content. Furthermore, semi-spherical and irregular CdS-NPs were directly observed as an important form of the Cd-NPs in paddy soils, as characterized by transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM-EDX). This research marks a significant step towards directly observing indigenous Cd-NPs at trace levels in paddy soil, offering a useful tool for quantitative understanding of the biogeochemical cycling of heavy metal-based NPs in complex matrices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article
...