Your browser doesn't support javascript.
loading
Complete combinatorial mutational enumeration of a protein functional site enables sequence-landscape mapping and identifies highly-mutated variants that retain activity.
Colom, Mireia Solà; Vucinic, Jelena; Adolf-Bryfogle, Jared; Bowman, James W; Verel, Sébastien; Moczygemba, Isabelle; Schiex, Thomas; Simoncini, David; Bahl, Christopher D.
Afiliação
  • Colom MS; Institute for Protein Innovation, Boston, Massachusetts, USA.
  • Vucinic J; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  • Adolf-Bryfogle J; Université Fédérale de Toulouse, IRIT UMR 5505, ANITI, Université Toulouse Capitole, Toulouse, France.
  • Bowman JW; Institute for Protein Innovation, Boston, Massachusetts, USA.
  • Verel S; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  • Moczygemba I; Institute for Protein Innovation, Boston, Massachusetts, USA.
  • Schiex T; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  • Simoncini D; LISIC UR 4491, Université Littoral Côte d'Opale, Calais, France.
  • Bahl CD; Institute for Protein Innovation, Boston, Massachusetts, USA.
Protein Sci ; 33(8): e5109, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38989563
ABSTRACT
Understanding how proteins evolve under selective pressure is a longstanding challenge. The immensity of the search space has limited efforts to systematically evaluate the impact of multiple simultaneous mutations, so mutations have typically been assessed individually. However, epistasis, or the way in which mutations interact, prevents accurate prediction of combinatorial mutations based on measurements of individual mutations. Here, we use artificial intelligence to define the entire functional sequence landscape of a protein binding site in silico, and we call this approach Complete Combinatorial Mutational Enumeration (CCME). By leveraging CCME, we are able to construct a comprehensive map of the evolutionary connectivity within this functional sequence landscape. As a proof of concept, we applied CCME to the ACE2 binding site of the SARS-CoV-2 spike protein receptor binding domain. We selected representative variants from across the functional sequence landscape for testing in the laboratory. We identified variants that retained functionality to bind ACE2 despite changing over 40% of evaluated residue positions, and the variants now escape binding and neutralization by monoclonal antibodies. This work represents a crucial initial stride toward achieving precise predictions of pathogen evolution, opening avenues for proactive mitigation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicoproteína da Espícula de Coronavírus / Enzima de Conversão de Angiotensina 2 / SARS-CoV-2 / Mutação Limite: Humans Idioma: En Revista: Protein Sci Assunto da revista: BIOQUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicoproteína da Espícula de Coronavírus / Enzima de Conversão de Angiotensina 2 / SARS-CoV-2 / Mutação Limite: Humans Idioma: En Revista: Protein Sci Assunto da revista: BIOQUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos
...