Your browser doesn't support javascript.
loading
Radiomics of pituitary adenoma using computer vision: a review.
Zilka, Tomas; Benesova, Wanda.
Afiliação
  • Zilka T; Saint Michal's Hospital, Bratislava, Slovakia.
  • Benesova W; Masaryk University, Brno, Czech Republic.
Med Biol Eng Comput ; 2024 Jul 16.
Article em En | MEDLINE | ID: mdl-39012416
ABSTRACT
Pituitary adenomas (PA) represent the most common type of sellar neoplasm. Extracting relevant information from radiological images is essential for decision support in addressing various objectives related to PA. Given the critical need for an accurate assessment of the natural progression of PA, computer vision (CV) and artificial intelligence (AI) play a pivotal role in automatically extracting features from radiological images. The field of "Radiomics" involves the extraction of high-dimensional features, often referred to as "Radiomic features," from digital radiological images. This survey offers an analysis of the current state of research in PA radiomics. Our work comprises a systematic review of 34 publications focused on PA radiomics and other automated information mining pertaining to PA through the analysis of radiological data using computer vision methods. We begin with a theoretical exploration essential for understanding the theoretical background of radionmics, encompassing traditional approaches from computer vision and machine learning, as well as the latest methodologies in deep radiomics utilizing deep learning (DL). Thirty-four research works under examination are comprehensively compared and evaluated. The overall results achieved in the analyzed papers are high, e.g., the best accuracy is up to 96% and the best achieved AUC is up to 0.99, which establishes optimism for the successful use of radiomic features. Methods based on deep learning seem to be the most promising for the future. In relation to this perspective DL methods, several challenges are remarkable It is important to create high-quality and sufficiently extensive datasets necessary for training deep neural networks. Interpretability of deep radiomics is also a big open challenge. It is necessary to develop and verify methods that will explain to us how deep radiomic features reflect various physics-explainable aspects.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Med Biol Eng Comput Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Eslováquia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Med Biol Eng Comput Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Eslováquia
...