Your browser doesn't support javascript.
loading
Cellulose nanofiber-based hybrid hydrogel electrode with superhydrophilicity enabling flexible high energy density supercapacitor and multifunctional sensors.
Wu, Qiong; Jiang, Chen; Zhao, Yuan; Li, Yongkang; Yu, Shitao; Huang, Lang.
Afiliação
  • Wu Q; State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China.
  • Jiang C; State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China.
  • Zhao Y; State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China.
  • Li Y; State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China.
  • Yu S; State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China.
  • Huang L; State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Te
Int J Biol Macromol ; : 134003, 2024 Jul 18.
Article em En | MEDLINE | ID: mdl-39032900
ABSTRACT
Flexible hybrid hydrogels (GO/AC/CNFn) with a 3D porous network structure and superhydrophilic property are synthesized by cross-linking and self-assembling graphene oxide (GO) and activated carbon (AC) with cellulose nanofiber (CNF) during microwave hydrothermal process. In this ternary composite hydrogel, CNF molecular chains bridge GO sheets to build the 3D skeleton and anchor AC particles within GO nanosheets, forming ordered architecture of GO/AC/CNFn hydrogel that simultaneously possesses high flexibility and excellent mechanical integrity. When using this hydrogel as additive-free electrode, the presence of AC provides developed porous structure and density to promote high volumetric capacitance, while the heteroatom nitrogen groups tune the surface property of the composite with increased electrical conductivity. Benefited from the optimized structure, GO/AC/CNF1 electrode delivers an ultra-high mass specific capacitance of 627 F/g and volume specific capacitance of 618 F/cm3 at 0.5 A/g in three-electrode system in 1 M H2SO4 electrolyte, which is kinetically demonstrated to be essentially originated from the capacitive contributions. The energy density reaches 32.2 Wh/kg at a power density of 150 W/kg for the fabricated flexible solid-state symmetric supercapacitor. Moreover, the obtained flexible device could sensitively response at varied physiological signals, shedding fresh lights on their potential applications in signal sensors and portable electronics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article
...