Your browser doesn't support javascript.
loading
Valid model-free spatial prediction.
Mao, Huiying; Martin, Ryan; Reich, Brian J.
Afiliação
  • Mao H; The Statistical and Applied Mathematical Sciences Institute.
  • Martin R; North Carolina State University.
  • Reich BJ; North Carolina State University.
J Am Stat Assoc ; 119(546): 904-914, 2024.
Article em En | MEDLINE | ID: mdl-39045463
ABSTRACT
Predicting the response at an unobserved location is a fundamental problem in spatial statistics. Given the difficulty in modeling spatial dependence, especially in non-stationary cases, model-based prediction intervals are at risk of misspecification bias that can negatively affect their validity. Here we present a new approach for model-free nonparametric spatial prediction based on the conformal prediction machinery. Our key observation is that spatial data can be treated as exactly or approximately exchangeable in a wide range of settings. In particular, under an infill asymptotic regime, we prove that the response values are, in a certain sense, locally approximately exchangeable for a broad class of spatial processes, and we develop a local spatial conformal prediction algorithm that yields valid prediction intervals without strong model assumptions like stationarity. Numerical examples with both real and simulated data confirm that the proposed conformal prediction intervals are valid and generally more efficient than existing model-based procedures for large datasets across a range of non-stationary and non-Gaussian settings.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Stat Assoc Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Stat Assoc Ano de publicação: 2024 Tipo de documento: Article
...