Pre- and post-surgery: advancements in artificial intelligence and machine learning models for enhancing patient management in infective endocarditis.
Int J Surg
; 2024 Jul 24.
Article
em En
| MEDLINE
| ID: mdl-39051669
ABSTRACT
Infective endocarditis (IE) is a severe infection of the inner lining of the heart, known as the endocardium. It is characterized by a range of symptoms and has a complicated pattern of occurrence, leading to a significant number of deaths. IE poses significant diagnostic and treatment difficulties. This evaluation examines the utilization of artificial intelligence (AI) and machine learning (ML) models in addressing information extraction (IE) management. It focuses on the most recent advancements and possible applications. Through this paper, we observe that AI/ML can significantly enhance and outperform traditional diagnostic methods leading to more accurate risk stratification, personalized therapies as well and real-time monitoring facilities. For example, early postsurgical mortality prediction models like SYSUPMIE achieved 'very good' area under the curve (AUROC) values exceeding 0.81. Additionally, AI/ML has improved diagnostic accuracy for prosthetic valve endocarditis, with PET-ML models increasing sensitivity from 59% to 72% when integrated into ESC criteria and reaching a high specificity of 83%. Furthermore, inflammatory biomarkers such as IL-15 and CCL4 have been identified as predictive markers, showing 91% accuracy in forecasting mortality, and identifying high-risk patients with specific CRP, IL-15, and CCL4 levels. Even simpler ML models, like Naïve Bayes, demonstrated an excellent accuracy of 92.30% in death rate prediction following valvular surgery for IE patients. Furthermore, this review provides a vital assessment of the advantages and disadvantages of such AI/ML models, such as better-quality decision support approaches like adaptive response systems on one hand, and data privacy threats or ethical concerns on the other hand. In conclusion, Al and ML must continue, through multi-centric and validated research, to advance cardiovascular medicine, and overcome implementation challenges to boost patient outcomes and healthcare delivery.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Int J Surg
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Jordânia