Your browser doesn't support javascript.
loading
Mechanistic Insights into How the Single Point Mutation Change the Autoantibody Repertoire.
Ni, Zhong; Song, Fangyuan; Zhou, Huimin; Xu, Ying; Wang, Zhiguo; Chen, Dongfeng.
Afiliação
  • Ni Z; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
  • Song F; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
  • Zhou H; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
  • Xu Y; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
  • Wang Z; Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
  • Chen D; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China. dongfeng@ujs.edu.cn.
Protein J ; 43(4): 683-696, 2024 Aug.
Article em En | MEDLINE | ID: mdl-39068631
ABSTRACT
A recent study showed that just one point mutation F33 to Y in the complementarity-determining region 1 of heavy chain (H-CDR1) could lead to the auto-antibody losing its DNA binding ability. However, the potential molecular mechanisms have not been well elucidated. In this study, we investigated how the antibody lost the DNA binding ability caused by mutation F33 to Y in the H-CDR1. We found that the electrostatic force was not the primary driving force for the interaction between anti-DNA antibodies and the antigen single strand DNA (ssDNA), and that the H-CDR2 largely contributed to the binding of antigen ssDNA, even larger than H-CDR1. The H-F33Y mutation could increase the hydrogen-bond interaction but impair the pi-pi stacking interaction between the antibody and ssDNA. We further found that F33H, W98H and Y95L in the wiletype antibody could form the stable pi-pi stacking interaction with the nucleotide bases of ssDNA. However, the Y33 in mutant could not form the parallel sandwich pi-pi stacking interaction with the ssDNA. To further confirm the importance of pi-pi stacking, the wildtype antibody and the mutants (F33YH, F33AH, W98AH and Y95AL) were experimentally expressed in CHO cells and purified, and the results from ELISA clearly showed that all the mutants lost the ssDNA binding ability. Taken together, our findings may not only deepen the understanding of the underlying interaction mechanism between autoantibody and antigen, but also broad implications in the field of antibody engineer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA de Cadeia Simples / Mutação Puntual / Regiões Determinantes de Complementaridade Limite: Animals / Humans Idioma: En Revista: Protein J Assunto da revista: BIOQUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA de Cadeia Simples / Mutação Puntual / Regiões Determinantes de Complementaridade Limite: Animals / Humans Idioma: En Revista: Protein J Assunto da revista: BIOQUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...