Your browser doesn't support javascript.
loading
A novel fluorescent and photothermal probe based on nanozyme-mediated cascade reaction for detecting organophosphorus pesticide residues.
Zhang, Siyu; Wang, Zheng; Feng, Yingying; Jiang, Chuang; Li, Hui; Yu, Zhenyu; Xiao, Yaqing; Hou, Ruyan; Wan, Xiaochun; Liu, Yingnan.
Afiliação
  • Zhang S; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
  • Wang Z; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
  • Feng Y; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
  • Jiang C; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
  • Li H; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
  • Yu Z; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
  • Xiao Y; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
  • Hou R; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China. Electron
  • Wan X; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China. Electron
  • Liu Y; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China. Electron
Talanta ; 279: 126620, 2024 Nov 01.
Article em En | MEDLINE | ID: mdl-39068829
ABSTRACT
In this study, a nanozyme (ZIF-Co-Cys) with high oxidase-like catalytic activity was prepared, and a ratiometric fluorescent/photothermal dual-mode probe was constructed for organophosphorus pesticides (OPs) detection based on the competitive effect of ZIF-Co-Cys and the enzymatic reaction product of acid phosphatase (ACP) on o-phenylenediamine and the inhibition effect of OPs on ACP activity. Using dimethyl dichloroviny phosphate (DDVP) as the model, both the fluorescence intensity ratio and the temperature change of the probe solution exhibited an excellent correlation with OPs concentration. The detection limits were 1.64 ng/mL and 0.084 ng/mL, respectively. Additionally, the detection of DDVP residues in real samples verified the outstanding anti-interference and accuracy of the probe. This work not only provided a complementary dual-mode method for the accurate and rapid detection of OPs residues in complex samples, but also supplied a new insight into the design of a multi-mode sensing platform based on the cascade reaction of nanozyme.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resíduos de Praguicidas / Corantes Fluorescentes Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resíduos de Praguicidas / Corantes Fluorescentes Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...