Your browser doesn't support javascript.
loading
Propofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants.
Kim, Elizabeth D; Wu, Xiaoan; Lee, Sangyun; Tibbs, Gareth R; Cunningham, Kevin P; Di Zanni, Eleonora; Perez, Marta E; Goldstein, Peter A; Accardi, Alessio; Larsson, H Peter; Nimigean, Crina M.
Afiliação
  • Kim ED; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
  • Wu X; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA.
  • Lee S; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
  • Tibbs GR; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
  • Cunningham KP; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA.
  • Di Zanni E; School of Life Sciences, University of Westminster, London, UK.
  • Perez ME; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
  • Goldstein PA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA.
  • Accardi A; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
  • Larsson HP; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
  • Nimigean CM; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
Nature ; 632(8024): 451-459, 2024 Aug.
Article em En | MEDLINE | ID: mdl-39085604
ABSTRACT
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Potássio / Ativação do Canal Iônico / Propofol / Epilepsia / Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização / Mutação Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Potássio / Ativação do Canal Iônico / Propofol / Epilepsia / Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização / Mutação Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos
...