Your browser doesn't support javascript.
loading
Numerical simulation in magnetic resonance imaging radiofrequency dosimetry.
Subaar, Christiana; Gyan, Emmanuel; Dompreh, Kwadwo A; Amoako, Joseph K; Edusei, George; Owusu, Alfred.
Afiliação
  • Subaar C; Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Gyan E; Department of Pharmaceutical Sciences, Faculty of Applied Sciences, Sunyani Technical University, Sunyani, Ghana.
  • Dompreh KA; Department of Physics, University of Cape Coast, Cape Coast, Ghana.
  • Amoako JK; Radiation Protection Institute, Ghana Atomic Energy Commission (GAEC), Accra, Ghana.
  • Edusei G; University of Environment and Sustainable Development, Somanya, Ghana.
  • Owusu A; Department of Physics, University of Cape Coast, Cape Coast, Ghana.
Biomed Phys Eng Express ; 10(5)2024 Sep 03.
Article em En | MEDLINE | ID: mdl-39094607
ABSTRACT
Magnetic Resonance Imaging (MRI) employs a radiofrequency electromagnetic field to create pictures on a computer. The prospective biological consequences of exposure to radiofrequency electromagnetic fields (RF EMFs) have not yet been demonstrated, and there is not enough evidence on biological hazards to offer a definite response concerning possible RF health dangers. Therefore, it is crucial to research the health concerns in reaction to RF EMFs, considering the entire exposure in terms of patients receiving MRI. Monitoring increases in temperaturein-vivothroughout MRI scan is extremely invasive and has resulted in a rise in the utilization of computational methods to estimate distributions of temperatures. The purpose of this study is to estimate the absorbed power of the brain exposed to RF in patients undergoing brain MRI scan. A three-dimensional Penne's bio-heat equation was modified to computationally analyze the temperature distributions and potential thermal effects within the brain during MRI scans in the 0.3 T to 1.5 T range (12.77 MHz to 63.87 MHz). The instantaneous temperature distributions of thein-vivotissue in the brain temperatures measured at a time, t = 20.62 s is 0.2 °C and t = 30.92 s is 0.4 °C, while the highest temperatures recorded at 1.03 min and 2.06 min were 0.4 °C and 0.6 °C accordingly. From the temperature distributions of thein-vivotissue in the brain temperatures measured, there is heat build-up in patients who are exposed to electromagnetic frequency ranges, and, consequently, temperature increases within patients are difficult to prevent. The study has, however, indicated that lengthier imaging duration appears to be related to increasing body temperature.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ondas de Rádio / Radiometria / Simulação por Computador / Encéfalo / Imageamento por Ressonância Magnética / Campos Eletromagnéticos Limite: Humans Idioma: En Revista: Biomed Phys Eng Express / Biomed. phys. eng. express / Biomedical physics & engineering express Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Gana

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ondas de Rádio / Radiometria / Simulação por Computador / Encéfalo / Imageamento por Ressonância Magnética / Campos Eletromagnéticos Limite: Humans Idioma: En Revista: Biomed Phys Eng Express / Biomed. phys. eng. express / Biomedical physics & engineering express Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Gana
...