Your browser doesn't support javascript.
loading
An initial exploration of machine learning for establishing associations between genetic markers and THC levels in Cannabis sativa samples.
Cisana, Selena; Di Nunzio, Michele; Brenzini, Valentina; Omedei, Monica; Seganti, Fabrizio; Ververi, Christina; Gerace, Enrico; Salomone, Alberto; Berti, Andrea; Barni, Filippo; Schiavone, Sergio; Coppi, Andrea; Di Nunzio, Ciro; Garofano, Paolo; Alladio, Eugenio.
Afiliação
  • Cisana S; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, Orbassano, Torino 10043, Italy. Electronic address: selena.cisana@antidoping.piemonte.it.
  • Di Nunzio M; Forensic Genetics Laboratory - Legal Medicine Unit Department of Medicine, University of Barcelona, Spain. Electronic address: michele.dinunzio@ub.edu.
  • Brenzini V; Department of Biology, University of Florence, Italy.
  • Omedei M; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, Orbassano, Torino 10043, Italy.
  • Seganti F; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, Orbassano, Torino 10043, Italy.
  • Ververi C; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, Orbassano, Torino 10043, Italy; Department of Chemistry, University of Torino, Italy.
  • Gerace E; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, Orbassano, Torino 10043, Italy.
  • Salomone A; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, Orbassano, Torino 10043, Italy; Department of Chemistry, University of Torino, Italy.
  • Berti A; Reparto CC Investigazioni Scientifiche di Cagliari, Italy.
  • Barni F; Reparto CC Investigazioni Scientifiche di Roma, Italy.
  • Schiavone S; Reparto CC Investigazioni Scientifiche di Roma, Italy.
  • Coppi A; Forensic Genetics Laboratory - Legal Medicine Unit Department of Medicine, University of Barcelona, Spain.
  • Di Nunzio C; Forensic Genetics Laboratory, Ceinge-Federico II University of Naples, Italy.
  • Garofano P; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, Orbassano, Torino 10043, Italy.
  • Alladio E; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, Orbassano, Torino 10043, Italy; Department of Chemistry, University of Torino, Italy. Electronic address: eugenio.alladio@unito.it.
Forensic Sci Int Genet ; 73: 103123, 2024 Nov.
Article em En | MEDLINE | ID: mdl-39173341
ABSTRACT
Cannabis sativa, a globally commercialized plant used for medicinal, food, fiber production, and recreation, necessitates effective identification to distinguish legal and illegal varieties in forensic contexts. This research utilizes multivariate statistical models and Machine Learning approaches to establish correlations between specific genotypes and tetrahydrocannabinol (Δ9-THC) content (%) in C. sativa samples. 132 cannabis leaves samples were obtained from legal growers in Piedmont, Italy, and illegal drug seizures in Turin. Samples were genetically profiled using a 13-loci STR multiplex and their Δ9-THC content was detected through quantitative GC-MS analysis. This study aims to assess the use of supervised classification modelling on genetic data to distinguish cannabis samples into legal and illegal categories, revealing distinct clusters characterized by unique allele profiles and THC content. t-distributed Stochastic Neighbor Embedding (t-SNE), Random Forest (RF) and Partial Least Squares Regression (PLS-R) were executed for the machine learning modelling. All the tested models resulted effective discriminating between legal samples and illegal. Although further validation is necessary, this study presents a novel forensic investigative approach, potentially aiding law enforcement in significant marijuana seizures or tracking illicit drug trafficking routes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dronabinol / Cannabis / Aprendizado de Máquina / Cromatografia Gasosa-Espectrometria de Massas Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Forensic Sci Int Genet Assunto da revista: GENETICA / JURISPRUDENCIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dronabinol / Cannabis / Aprendizado de Máquina / Cromatografia Gasosa-Espectrometria de Massas Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Forensic Sci Int Genet Assunto da revista: GENETICA / JURISPRUDENCIA Ano de publicação: 2024 Tipo de documento: Article
...