Your browser doesn't support javascript.
loading
An integrated biorefinery strategy for Eucalyptus fractionation and co-producing glucose, furfural, and lignin based on deep eutectic solvent/cyclopentyl methyl ether system.
Sun, Li-Li; Sun, Shao-Ni; Cao, Xue-Fei; Yao, Shuang-Quan.
Afiliação
  • Sun LL; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
  • Sun SN; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China. Electronic address: sunshaoni@126.com.
  • Cao XF; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China. Electronic address: caoxuefei@bjfu.edu.cn.
  • Yao SQ; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
Carbohydr Polym ; 343: 122420, 2024 Nov 01.
Article em En | MEDLINE | ID: mdl-39174113
ABSTRACT
A novel biphasic system containing water-soluble deep eutectic solvent (DES) and cyclopentyl methyl ether (CPME) was developed to treat Eucalyptus for furfural production, extracting lignin and enhancing cellulose enzymatic hydrolysis. Herein effect of DES type, water content in DES, temperature and time on furfural yield in water-soluble DES/CPME pretreatment process was firstly evaluated. A maximum furfural yield of 80.6 % was attained in 10 min at 150 °C with choline chloride (ChCl)/citric acid monohydrate (CAM)/CPME system containing 30 wt% water and 2.5 wt% SnCl4·5H2O, which was higher than that obtained from ChCl/CAM/CPME system without water (55.5 %) and H2O/CPME system (49.7 %). These results demonstrated that the water-soluble DES/CPME system was a powerful method enhancing the furfural production. Under the optimal pretreatment conditions, the delignification and glucose yield were reached to 72.7 % and 94.3 %, respectively. The extracted lignin showed low molecular weight and ß-aryl-ether was obviously cleaved. Additionally, water-soluble DES/CPME pretreatment led to a significant removal of hemicelluloses (100.0 %) and lignin (72.7 %) and introduced morphological changes on cell walls, especially from the cell corner (CC) and secondary wall (SW) layers. Overall, this work proposed a practical one-step fractionation strategy for co-producing furfural, lignin and fermentable sugar, providing a way to biorefinery.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Carbohydr Polym Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Carbohydr Polym Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...