Your browser doesn't support javascript.
loading
Functional analysis on the role of HvHKT1.4 in barley (Hordeum vulgare L.) salinity tolerance.
Zhu, Juan; Sun, Chengqun; Zhang, Yuhang; Zhang, Mengna; Zhao, Chenchen; Lv, Chao; Guo, Baojian; Wang, Feifei; Zhou, Meixue; Xu, Rugen.
Afiliação
  • Zhu J; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Mi
  • Sun C; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Mi
  • Zhang Y; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Mi
  • Zhang M; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Mi
  • Zhao C; Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
  • Lv C; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Mi
  • Guo B; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Mi
  • Wang F; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Mi
  • Zhou M; Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
  • Xu R; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Mi
Plant Physiol Biochem ; 215: 109061, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39182425
ABSTRACT
High-affinity potassium transporters (HKTs) are well known proteins that govern the partitioning of Na+ between roots and shoots. Six HvHKTs were identified in barley and designated as HvHKT1.1, HvHKT1.3, HvHKT1.4, HvHKT1.5, HvHKT2.1 and HvHKT2.2 according to their similarity to previously reported OsHKTs. Among these HvHKTs, HvHKT1.4 was highly up-regulated under salinity stress in both leaves and roots of Golden Promise. Subcellular localization analysis showed that HvHKT1.4 is a plasma-membrane-localized protein. The knockout mutants of HvHKT1.4 showed greater salinity sensitivity and higher Na+ concentration in leaves than wild-type plants. Haplotype analysis of HvHKT1.4 in 344 barley accessions showed 15 single nucleotide substitutions in the CDS region, belonging to five haplotypes. Significant differences in mean salinity damage scores, leaf Na+ contents and Na+/K+ were found between Hap5 and other haplotypes with Hap5 showing better salinity tolerance. The results indicated that HvHKT1.4 can be an effective target in improving salinity tolerance through ion homeostasis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Hordeum / Tolerância ao Sal Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Hordeum / Tolerância ao Sal Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article
...