Your browser doesn't support javascript.
loading
Biochar confers significant microbial resistance to ammonia toxicity in n-caproic acid production.
Wu, Benteng; Lin, Richen; Gu, Jing; Yuan, Haoran; Murphy, Jerry D.
Afiliação
  • Wu B; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou
  • Lin R; MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China.
  • Gu J; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China.
  • Yuan H; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address: yuanhr@ms.giec.ac.cn.
  • Murphy JD; MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland. Electronic address: jerry.murphy@ucc.ie.
Water Res ; 266: 122367, 2024 Nov 15.
Article em En | MEDLINE | ID: mdl-39243461
ABSTRACT
Microbial chain elongation integrating innovative bioconversion technologies with organic waste utilization can transition current energy-intensive n-caproic acid production to sustainable circular bioeconomy systems. However, ammonia-rich waste streams, despite their suitability, pose inhibitory challenges to these bioconversion processes. Herein, biochar was employed as an additive to enhance the activity of chain elongating microbes under ammonia inhibition conditions, with an objective to detail underlying mechanisms of improvements. Biochar addition significantly improved chain elongation performance even under severe ammonia stress (exceeding 8 g N/L), increasing n-caproic acid yields by 40 % to 158 % and reducing lag times by 51 % to 90 %, compared with the best-performing group without biochar addition. The material contribution to n-caproic production reached up to 94.3 % (at 4 g N/L). These enhancements were mainly attributed to the new electron syntrophy induced by biochar, which improved electron transfer system activity and electrical conductivity of the fermentation system. This is further substantiated by increased relative abundances of the genus Sporanaerobacter, electroactive bacteria, and up-regulated direct electron transfer-related genes including conductive pili and c-type cytochrome. This study demonstrates that biochar can confer robust resilience to ammonia toxicity in functional microbes, paving a way for efficient and sustainable n-caproic acid production.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carvão Vegetal / Amônia Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carvão Vegetal / Amônia Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article
...