Your browser doesn't support javascript.
loading
Infection length and host environment influence on Plasmodium falciparum dry season reservoir.
Andrade, Carolina M; Carrasquilla, Manuela; Dabbas, Usama; Briggs, Jessica; van Dijk, Hannah; Sergeev, Nikolay; Sissoko, Awa; Niangaly, Moussa; Ntalla, Christina; LaVerriere, Emily; Skinner, Jeff; Golob, Klara; Richter, Jeremy; Cisse, Hamidou; Li, Shanping; Hendry, Jason A; Asghar, Muhammad; Doumtabe, Didier; Farnert, Anna; Ruppert, Thomas; Neafsey, Daniel E; Kayentao, Kassoum; Doumbo, Safiatou; Ongoiba, Aissata; Crompton, Peter D; Traore, Boubacar; Greenhouse, Bryan; Portugal, Silvia.
Afiliação
  • Andrade CM; Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany. carolina.andrade@radboudumc.nl.
  • Carrasquilla M; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands. carolina.andrade@radboudumc.nl.
  • Dabbas U; Max Planck Institute for Infection Biology, Berlin, Germany.
  • Briggs J; Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
  • van Dijk H; Max Planck Institute for Infection Biology, Berlin, Germany.
  • Sergeev N; Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA.
  • Sissoko A; Chan-Zuckerberg Biohub, San Francisco, CA, USA.
  • Niangaly M; Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
  • Ntalla C; Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
  • LaVerriere E; Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
  • Skinner J; Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
  • Golob K; Max Planck Institute for Infection Biology, Berlin, Germany.
  • Richter J; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
  • Cisse H; Broad Institute, Cambridge, MA, USA.
  • Li S; Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA.
  • Hendry JA; Max Planck Institute for Infection Biology, Berlin, Germany.
  • Asghar M; Max Planck Institute for Infection Biology, Berlin, Germany.
  • Doumtabe D; Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
  • Farnert A; Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA.
  • Ruppert T; Max Planck Institute for Infection Biology, Berlin, Germany.
  • Neafsey DE; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
  • Kayentao K; Department of Biology, Lund University, Lund, Sweden.
  • Doumbo S; Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
  • Ongoiba A; Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
  • Crompton PD; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
  • Traore B; ZMBH, Heidelberg University, Heidelberg, Germany.
  • Greenhouse B; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
  • Portugal S; Broad Institute, Cambridge, MA, USA.
EMBO Mol Med ; 16(10): 2349-2375, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39284949
ABSTRACT
Persistence of malaria parasites in asymptomatic hosts is crucial in areas of seasonally-interrupted transmission, where P. falciparum bridges wet seasons months apart. During the dry season, infected erythrocytes exhibit extended circulation with reduced cytoadherence, increasing the risk of splenic clearance of infected cells and hindering parasitaemia increase. However, what determines parasite persistence for long periods of time remains unknown. Here, we investigated whether seasonality affects plasma composition so that P. falciparum can detect and adjust to changing serological cues; or if alternatively, parasite infection length dictates clinical presentation and persistency. Data from Malian children exposed to alternating ~6-month wet and dry seasons show that plasma composition is unrelated to time of year in non-infected children, and that carrying P. falciparum only minimally affects plasma constitution in asymptomatic hosts. Parasites persisting in the blood of asymptomatic children from the dry into the ensuing wet season rarely if ever appeared to cause malaria in their hosts as seasons changed. In vitro culture in the presence of plasma collected in the dry or the wet seasons did not affect parasite development, replication or host-cell remodelling. The absence of a parasite-encoded sensing mechanism was further supported by the observation of similar features in P. falciparum persisting asymptomatically in the dry season and parasites in age- and sex-matched asymptomatic children in the wet season. Conversely, we show that P. falciparum clones transmitted early in the wet season had lower chance of surviving until the end of the following dry season, contrasting with a higher likelihood of survival of clones transmitted towards the end of the wet season, allowing for the re-initiation of transmission. We propose that the decreased virulence observed in persisting parasites during the dry season is not due to the parasites sensing ability, nor is it linked to a decreased capacity for parasite replication but rather a consequence decreased cytoadhesion associated with infection length.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plasmodium falciparum / Estações do Ano / Malária Falciparum Limite: Child / Child, preschool / Female / Humans / Infant / Male País/Região como assunto: Africa Idioma: En Revista: EMBO Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plasmodium falciparum / Estações do Ano / Malária Falciparum Limite: Child / Child, preschool / Female / Humans / Infant / Male País/Região como assunto: Africa Idioma: En Revista: EMBO Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha
...