Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters








Publication year range
1.
Animals (Basel) ; 13(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37508071

ABSTRACT

This study aimed to evaluate the productive performance and microbiota variation in the jejunum and cecum of two rabbit breeds with different growth rates. This study was carried out on Native Middle-Egypt Breed (NMER) and Giant Flanders (GF) rabbits from 5 weeks to 12 weeks of age. Twenty NMER (NM) and GF male rabbits were slaughtered, and the jejunum and cecum tracts were collected to assay gut microbiota composition via 16S ribosomal RNA (rRNA) gene sequencing and histology examination. At 12 weeks of age, daily weight gain, villus height in the jejunum, total protein, and albumin were higher in GF rabbits than in NMER rabbits. Also, the jejunal villi of GF were well arranged in their dense borders. The microbiota between the jejunum and cecum was significantly different in terms of Beta-diversity. A significant correlation between Enterococcus (jejunum NM samples) and Lactobacillus (cecum GF samples) with body weight and weight gain was found (p < 0.05). Moreover, Escherichia-Shigella in the cecum of NM was significantly correlated with weight gain (p < 0.05). The most abundant genera identified in the jejunal and cecal contents of GF were generally beneficial microbiota. They may also play a role in reducing the pathogenic effects of Escherichia coli in these rabbits.

2.
Anim Biotechnol ; 34(8): 3749-3756, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37310292

ABSTRACT

This study investigated the associations between the c.189G > T polymorphism of the insulin receptor substrate-1 (IRS-1) gene and the growth and litter size-related traits in the Native rabbit in Middle Egypt (NMER). One hundred sixty-two NMER rabbits were genotyped by RFLP-PCR using Sau3AI restriction enzyme and the associations of the reported genotypes with body weights at 5th, 6th, 8th, 10th, and 12th week old, body gain, and daily gain plus, the litter size-related traits were determined. Additionally, the genotypic and allelic frequencies, the effective (Ne) and observed (NA) numbers of alleles, observed (Ho) and expected (He) heterozygosity, Hardy-Weinberg equilibrium (HWE), and the decrease in heterozygosity because of inbreeding (FIS) were calculated. Three genotypes; GG, GT, and TT with 0.65, 0.33, and 0.02 frequencies, respectively which fit HWE were reported. These genotypes displayed a marked low FIS value. Significant associations of the genotypes with the body weights, and gains, except at the 5th week old determined with superiority of the GT genotype compared with the other genotypes. All reported litter size-related traits significantly varied among different genotypes. In summary, the c.189G > T SNP of the IRS-1 gene is an effective genetic marker to improve growth performance and litter size traits of the NMER rabbits.


Subject(s)
Polymorphism, Single Nucleotide , Rabbits , Animals , Insulin Receptor Substrate Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Egypt , Genotype , Body Weight/genetics
3.
NPJ Biofilms Microbiomes ; 9(1): 28, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253749

ABSTRACT

Cecal microbiota plays an essential role in chicken health. However, its contribution to fat metabolism, particularly in abdominal fat deposition, which is a severe problem in the poultry industry, is still unclear. Here, chickens at 1, 4, and 12 months of age with significantly (p < 0.05) higher and lower abdominal fat deposition were selected to elucidate fat metabolism. A significantly (p < 0.05) higher mRNA expression of fat anabolism genes (ACSL1, FADS1, CYP2C45, ACC, and FAS), a significantly (p < 0.05) lower mRNA expression of fat catabolism genes (CPT-1 and PPARα) and fat transport gene APOAI in liver/abdominal fat of high abdominal fat deposition chickens indicated that an unbalanced fat metabolism leads to excessive abdominal fat deposition. Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis were found significantly (p < 0.05) higher in high abdominal fat deposition chickens, while Sphaerochaeta was higher in low abdominal fat deposition chickens. Further, Spearman correlation analysis indicated that the relative abundance of cecal Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis was positively correlated with abdominal fat deposition, yet cecal Sphaerochaeta was negatively correlated with fat deposition. Interestingly, transferring fecal microbiota from adult chickens with low abdominal fat deposition into one-day-old chicks significantly (p < 0.05) decreased Parabacteroides and fat anabolism genes, while markedly increased Sphaerochaeta (p < 0.05) and fat catabolism genes (p < 0.05). Our findings might help to assess the potential mechanism of cecal microbiota regulating fat deposition in chicken production.


Subject(s)
Chickens , Microbiota , Animals , Lipid Metabolism , RNA, Messenger/metabolism , Abdominal Fat/metabolism
4.
Animals (Basel) ; 12(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36552394

ABSTRACT

this study aimed to investigate the growth mechanism in a local breed of chickens by comparing the highest weight (HW) and the lowest weight in their microbiota, histological characteristics, and gene expression. Golden Montazah chickens, an Egyptian breed, were reared until they were 49 days old. All of the birds were fed ad libitum by a starter diet from day 1 until day 21, followed by a grower diet from day 21 to the end of the study. At 49 days old, the forty-eight birds with the heaviest body weight (HW) and the lightest body weight (LW) were chosen. Blood biochemical and histological morphometric parameters, electron microscopy, and intestinal nutrient transporter gene expression were studied in the sampled jejunum. The microbial composition and functions of the content and mucosa in HW and LW chickens were studied using 16S rRNA gene sequencing. The histological morphometric parameters were all more significantly (p < 0.05) increased in the HW chickens than in the LW chickens. Total protein, albumin, and triglycerides in serum were significantly higher (p < 0.05) in the HW chickens than in the LW chickens. The microbiome profile in the gut showed that Microbacterium and Sphingomonas were positively correlated with the body weights. In the local breed, there were significant differences in the intestinal microstructure which could enhance the growth mechanism and body weight. Our findings showed that some microbial components were significantly associated with body weight and their interactions with the host could be inferred to explain why these interactions might alter the host's metabolic responses. Further investigation into combining bioinformatics with lab experiments in chickens will help us to understand how gut bacteria can change the host's metabolism by special metabolic features in the gastrointestinal system.

6.
Microbiome ; 10(1): 107, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35836252

ABSTRACT

BACKGROUND: Intestinal inflammation is prevalent in chicken, which results in decreased growth performance and considerable economic losses. Accumulated findings established the close relationship between gut microbiota and chicken growth performance. However, whether gut microbiota impacts chicken growth performance by lessening intestinal inflammation remains elusive. RESULTS: Seven-weeks-old male and female chickens with the highest or lowest body weights were significantly different in breast and leg muscle indices and average cross-sectional area of muscle cells. 16S rRNA gene sequencing indicated Gram-positive bacteria, such as Lactobacilli, were the predominant species in high body weight chickens. Conversely, Gram-negative bacteria, such as Comamonas, Acinetobacter, Brucella, Escherichia-Shigella, Thermus, Undibacterium, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were significantly abundant in low body weight chickens. Serum lipopolysaccharide (LPS) level was significantly higher in low body weight chickens (101.58 ± 5.78 ng/mL) compared with high body weight chickens (85.12 ± 4.79 ng/mL). The expression of TLR4, NF-κB, MyD88, and related inflammatory cytokines in the jejunum was significantly upregulated in low body weight chickens, which led to the damage of gut barrier integrity. Furthermore, transferring fecal microbiota from adult chickens with high body weight into 1-day-old chicks reshaped the jejunal microbiota, mitigated inflammatory response, and improved chicken growth performance. CONCLUSIONS: Our findings suggested that jejunal microbiota could affect chicken growth performance by mitigating intestinal inflammation. Video Abstract.


Subject(s)
Chickens , Microbiota , Animals , Body Weight , Female , Inflammation , Jejunum , Male , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
7.
Microb Biotechnol ; 15(3): 844-861, 2022 03.
Article in English | MEDLINE | ID: mdl-34264533

ABSTRACT

It has been established that gut microbiota influences chicken growth performance and fat metabolism. However, whether gut microbiota affects chicken growth performance by regulating fat metabolism remains unclear. Therefore, seven-week-old chickens with high or low body weight were used in the present study. There were significant differences in body weight, breast and leg muscle indices, and cross-sectional area of muscle cells, suggesting different growth performance. The relative abundance of gut microbiota in the caecal contents at the genus level was compared by 16S rRNA gene sequencing. The results of LEfSe indicated that high body weight chickens contained Microbacterium and Sphingomonas more abundantly (P < 0.05). In contrast, low body weight chickens contained Slackia more abundantly (P < 0.05). The results of H & E, qPCR, IHC, WB and blood analysis suggested significantly different fat metabolism level in serum, liver, abdominal adipose, breast and leg muscles between high and low body weight chickens. Spearman correlation analysis revealed that fat metabolism positively correlated with the relative abundance of Microbacterium and Sphingomonas while negatively correlated with the abundance of Slackia. Furthermore, faecal microbiota transplantation was performed, which verified that transferring faecal microbiota from adult chickens with high body weight into one-day-old chickens improved growth performance and fat metabolism in liver by remodelling the gut microbiota. Overall, these results suggested that gut microbiota could affect chicken growth performance by regulating fat metabolism.


Subject(s)
Chickens , Microbiota , Animals , Body Weight , Cecum/microbiology , RNA, Ribosomal, 16S/genetics
8.
Animals (Basel) ; 11(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34827838

ABSTRACT

The objectives of this study were to achieve phenotypic characterization of three domestic Egyptian goose populations collected from three different geographical zones (Kafr El-Sheikh, Fayoum and Luxor) and to perform genetic characterization of these three populations based on mtDNA D-loop and 12 microsatellite markers. The body measurements of 402 domestic mature geese belonging to these three governorates showed that the lengths of the head, culmen and tarsus and the live body weight varied significantly among the three studied Egyptian goose populations. After alignment of a 710-base-pair segment of the goose mtDNA control region, there was a single haplotype in the three Egyptian goose populations, indicating the same maternal origins. The genotyping of the 12 microsatellite markers showed low diversity indices, including average observed (NA) and effective (NE) number of alleles and observed (HO) and expected heterozygosity (HE) (3.333, 1.760, 0.277 and 0.352, respectively), and a high inbreeding coefficient (FIS = 0.203) across the three Egyptian goose populations. The high inbreeding and low genetic and morphological differentiation of Egyptian geese could be corrected by establishing a large base population through capturing small populations with the highest genetic variation. The findings of the current study can therefore serve as an initial guide to design further investigations for developing conservation programs of Egyptian geese genetic resources.

9.
Animals (Basel) ; 10(5)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429525

ABSTRACT

Protocols for manual weighing of turkeys are not practical on turkey farms because of the large body sizes, heavy weights and flighty nature of turkeys. The sounds turkeys make may be a proxy for bird weights, but the relationship between turkey sounds and bird weights has not been studied. The aim of this study was to correlate peak frequency (PF) of vocalization with the age and weight of the bird and examine the possibility using PF to predict the weight of turkeys. The study consisted of four trials in Egypt. Sounds of birds and their weights were recorded for 11 days during the growth period in each trial. A total 2200 sounds were manually analyzed and labelled by extracting individual and general sounds on the basis of the amplitude and frequency of the sound signal. The PF of vocalizations in each trial, as well as in pooled trails, were evaluated to determine the relationship between PF and the age and weight of the turkey. PF exhibited a highly significant negative correlation with the weight and age of the turkeys showing that PF of vocalizations can be used for predicting the weight of turkeys. Further studies are necessary to refine the procedure.

11.
Animals (Basel) ; 10(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213946

ABSTRACT

This study was conducted to investigate the causes of mortality in young rabbits. A total of 110 V-Line breed female rabbits aged 5 m were used in this study. Rabbit kits were examined daily in pre- and postweaning stages to detect clinical disorders that caused death. The postmortem examination was carried out on dead kits. Furthermore, rabbits were examined for the probable bacteriological and parasitological causes of death. Fecal samples were collected from each dead kit and examined by standard microbiological procedures for bacterial pathogens and macroscopically and microscopically for the presence of endo- and ectoparasites. Throughout two breeding seasons, 2238 newborns were obtained, of which 1736 died, accounting for a 77.57% mortality rate. During preweaning (1st month of age) and postweaning (up to 3 months of age), 1501 (67.10%) and 235 (31.90%) deaths were recorded, respectively. A postweaning fecal examination revealed that 198 out of 229 (86.50%) were diarrheic rabbits due to Eimeria infection. Cittotaenia spp. eggs were detected in 4.37% of fecal samples, and mites (Sarcoptis scabiei) were present in 6.55%. E. coli was detected in 100% of examined animals during pre- and postweaning periods; however, Salmonella spp. were 97.22% and 43.67, respectively. Managemental risk factors were the main causes in preweaning mortality, including insufficient milk supply (37.37%), cannibalism (26.38%), mange infestation of a rabbit doe (22.20%), mastitis (4.30%), lack of doe care (5.00%), bronchopneumonia (2.13%), and enteritis (1.80%). However, risk factors in postweaning mortality included sudden death with general septicemia (13.80%), enteritis (9.63%), bronchopneumonia (5.43%), mange infestation (2.04%), and malnutrition (0.81%). In conclusion, the etiology of preweaning mortality in kits was related mainly to the doe, especially managemental risk factors. However, a combination of multiple pathogenic agents (parasites and bacteria) and managemental factors was reported in the postweaning stage. Careful attention must be paid to avoid these causes.

12.
Animals (Basel) ; 9(11)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766204

ABSTRACT

This study was conducted to investigate the effect of prebiotic supplementation against intestinal coccidiosis in rabbits. Fifty male rabbits aged 35-60 days (1-1.5 kg) were divided into prophylactic and therapeutic experiments (five groups, 10 rabbits per group). Prophylactic experiment had prebiotic supplemented (PS-P), non-supplemented infected control (NI-P), and non-supplemented non-infected control (NN-P) groups. Ten days post-prebiotic supplementation (PPS), rabbits in groups PS-P and NI-P were infected orally with 5.0 × 104 sporulated oocysts of mixed Eimeria species. However, therapeutic experiment had prebiotic supplemented (PS-T) and untreated infected (UI-T) groups of naturally infected rabbits with Eimeria species. A significant reduction in oocyst count per gram feces (OPG) (p ≤ 0.05) was reported in the PS-P (57.33 × 103 ± 2.84) and NI-P (130.83 × 103 ± 43.38) groups during the experiment. Additionally, rabbits in groups (PS-P, 970.33 ± 31.79 g and NI-P, 870.66 ± 6.66 g) showed weight loss after infection. However, a significant (p ≤ 0.05) decrease in OPG was observed at day seven PPS in the PS-T group (4 × 103 ± 0.00) when compared with the UI-T group (32 × 103 ± 7.54). Furthermore, the PS-T group had a higher body weight than rabbits in the UI-T group. Histopathological findings of the intestinal tissues (duodenum, jejunum, and ileum) showed that the counts of the endogenous stages were significantly higher in the NI-P and UI-T groups than in the prebiotic-supplemented groups (PS-P and PS-T). Supplementation of the prebiotic did not have any adverse effects on biochemical parameters, such as AST, ALT, creatinine, total protein, and total cholesterol. In conclusion, prebiotic supplementation can be used to minimize the adverse effects of intestinal coccidiosis in rabbits, which in turn limits body weight loss, especially for the prophylaxis of coccidial infection.

SELECTION OF CITATIONS
SEARCH DETAIL