Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cell Physiol Biochem ; 58(5): 548-570, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39370950

ABSTRACT

BACKGROUND/AIMS: High Monomeric Polyphenols Berries Extract (HMPBE) is a formula highly rich in polyphenols clinically proven to enhance learning and memory. It is currently used to enhances cognitive performance including accuracy, working memory and concentration. METHODS: Here, we investigated for the first time the beneficial effects of HMPBE in a mouse model of acute and chronic traumatic brain injury (TBI). RESULTS: HMPBE, at the dose of 15 mg/kg was able to reduce histological alteration as well as inflammation and lipid peroxidation. HMPBE ameliorate TBI by improving Nrf-2 pathway, reducing Nf-kb nuclear translocation and apoptosis, and ameliorating behavioral alteration such as anxiety and depression. Moreover, in the chronic model of TBI, HMPBE administration restored the decline of Tyrosine Hydroxylase (TH) and dopamine transporter (DAT) and the accumulation of a-synuclein into the midbrain region. This finding correlates the beneficial effect of HMPBE administration with the onset of parkinsonism related to traumatic brain damage. CONCLUSION: The data may open a window for developing new support strategies to limit the neuroinflammation event of acute and chronic TBI.


Subject(s)
Fruit , NF-E2-Related Factor 2 , NF-kappa B , Plant Extracts , Polyphenols , bcl-2-Associated X Protein , Animals , NF-E2-Related Factor 2/metabolism , Polyphenols/pharmacology , Polyphenols/chemistry , Polyphenols/therapeutic use , Mice , NF-kappa B/metabolism , Male , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , bcl-2-Associated X Protein/metabolism , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Tyrosine 3-Monooxygenase/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Apoptosis/drug effects , Mice, Inbred C57BL , Brain/metabolism , Brain/drug effects , Brain/pathology , Lipid Peroxidation/drug effects
2.
Front Chem ; 12: 1323738, 2024.
Article in English | MEDLINE | ID: mdl-39391832

ABSTRACT

Introduction: CEP-37440 was synthesized and supplied by the research and development division of Teva Branded Pharmaceutical Products (West Chester, PA, United States). CEP-37440 represents a newly developed compound that exhibits selectivity inhibition of Focal Adhesion Kinase and Anaplastic Lymphoma Kinase FAK/ALK receptors, demonstrating novel characteristics as an orally active inhibitor. The simultaneous inhibition of ALK and FAK can effectively address resistance and enhance the therapeutic efficacy against tumors through a synergistic mechanism. Methods: The objective of this research was to create an LC-MS/MS method that is precise, efficient, environmentally friendly, and possesses a high level of sensitivity for the quantification of CEP-37440 in human liver microsomes (HLMs). The aforementioned approach was subsequently employed to evaluate the metabolic stability of CEP-37440 in HLMs in an in vitro setting. The validation procedures for the LC-MS/MS analytical method in the HLMs were performed following the bio-analytical method validation guidelines set out by the US-FDA. The AGREE program was utilized to assess the ecological impacts of the current LC-MS/MS methodology. Results and Discussion: The calibration curve linearity was seen in the range of 1-3000 ng/mL. The inter-day accuracy (% RE) exhibited a range of -2.33% to 3.22%, whilst the intra-day accuracy demonstrated a range of -4.33% to 1.39%. The inter-day precision (% RSD) exhibited a range of 0.38% to 3.60%, whilst the intra-day precision demonstrated a range of 0.16% to 6.28%. The determination of the in vitro half-life (t1/2) and moderate intrinsic clearance (Clint) of CEP-37440 yielded values of 23.24 min and 34.74 mL/min/kg, respectively. The current manuscript is considered the first analytical study for CEP-37440 quantification with the application to metabolic stability assessment. These results suggest that CEP-37440 can be categorized as a pharmaceutical agent with a moderate extraction ratio. Consequently, it is postulated that the administration of CEP-37440 to patients may not lead to the accrual of dosages within the human organs. According to in silico P450 metabolic and DEREK software, minor structural alterations to the ethanolamine moiety or substitution of the group in drug design have the potential to enhance the metabolic stability and safety profile of novel derivatives in comparison to CEP-37440.

3.
J Sep Sci ; 47(15): e2400393, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39087620

ABSTRACT

Zotizalkib (ZTK, TPX-0131) is a fourth-generation highly effective inhibitor of wild-type anaplastic lymphoma kinase (ALK) and ALK-resistant mutations that can penetrate the central nervous system. It exhibited greater potency compared to all five officially approved ALK inhibitors. The aim of this study was to develop a rapid, accurate, eco-friendly, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for measuring the concentration of ZTK in human liver microsomes (HLMs). The validation aspects of the current UHPLC-MS/MS methodology in the HLMs were conducted in accordance with the bioanalytical method validation standards specified by the US Food and Drug Administration. ZTK and encorafenib were separated using an Agilent C8 column (Eclipse Plus) and an isocratic mobile phase. The calibration curve for the developed ZTK exhibited a linear relationship within the concentration range of 1-3000 ng/mL. The results from the Analytical Green-ness Metric Approach program (0.76) suggested that the created method demonstrated a significant degree of environmental sustainability. The in vitro half-life (t1/2) and intrinsic clearance (Clint) of ZTK were determined to be 15.79 min and 51.35 mL/min/kg, respectively that suggests the ZTK exhibits characteristics similar to those of a medication with a high extraction ratio. These approaches are crucial for the progress of novel pharmaceutical development, especially in improving metabolic stability.


Subject(s)
Microsomes, Liver , Tandem Mass Spectrometry , Humans , Microsomes, Liver/metabolism , Microsomes, Liver/chemistry , Chromatography, High Pressure Liquid , Molecular Structure
4.
J Sep Sci ; 47(15): e2400346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39087624

ABSTRACT

Palbociclib (Ibrance; Pfizer) was approved for the management of metastatic breast cancer characterized by hormone receptor-positive/human epidermal growth factor receptor 2 negative status. The objective of this study was to create a fast, precise, environmentally friendly, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry approach for quantifying palbociclib (PAB) in human liver microsomes with the application for assessing metabolic stability. The validation features were performed in agreement with the bioanalytical method validation standards outlined by the US Food and Drug Administration. The StarDrop software (WhichP450 and DEREK modules) was used in screening the metabolic lability and structural alerts of PAB. The separation of PAB and encorafenib (as an internal standard) was achieved on a C8 column, employing an isocratic mobile phase. The inter-day and intra-day accuracy and precision ranged from -6.00% to 4.64% and from -2.33% to 3.13%, respectively. The constructed calibration curve displayed a linearity in the range of 1-3000 ng/mL. The sensitivity of the established approach was proven by the lower limit of quantification of 0.73 ng/mL. The Analytical GREEness calculator results revealed the high level of greenness of the developed method. The PAB's metabolic stability (t1/2 of 18.5 min and a moderate clearance (Clint) of 44.8 mL/min/kg) suggests a high extraction ratio medication that matched the WhichP450 software results.


Subject(s)
Microsomes, Liver , Piperazines , Pyridines , Tandem Mass Spectrometry , Humans , Piperazines/metabolism , Piperazines/analysis , Piperazines/chemistry , Microsomes, Liver/metabolism , Microsomes, Liver/chemistry , Pyridines/metabolism , Pyridines/chemistry , Pyridines/analysis , Chromatography, High Pressure Liquid , Computer Simulation , Antineoplastic Agents/analysis , Antineoplastic Agents/metabolism , Antineoplastic Agents/chemistry
5.
Heliyon ; 10(13): e34109, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39091946

ABSTRACT

The orally given, irreversible, third-generation inhibitor of the epidermal growth factor receptor (EGFR), known as Nazartinib (EGF816), is now undergoing investigation in Phase II clinical trials conducted by Novartis for Non-Small Cell Lung Cancer. The primary aim of the current research was to establish a rapid, specific, environmentally friendly, and highly versatile UPLC-MS/MS methodology for the determination of nazartinib (NZT) levels in human liver microsomes (HLMs). Subsequently, same approach was used to examine the metabolic stability of NZT. The UPLC-MS/MS method employed in HLMs was validated as stated in the bioanalytical method validation criteria outlined by the US- FDA. The evaluation of the metabolic stability of NZT and the identification of potentially structural alarms were performed using the StarDrop software package that includes the P450 and DEREK software. The calibration curve for NZT showed a linearity in the range from 1 to 3000 ng/mL. The inter-day accuracy and precision exhibited a range of values between -4.33 % and 4.43 %, whereas the intra-day accuracy and precision shown a range of values between -2.78 % and 7.10 %. The sensitivity of the developed approach was verified through the determination of a LLOQ of 0.39 ng/mL. The intrinsic clearance and in vitro half-life of NZT were assessed to be 46.48 mL/min/kg and 17.44 min, respectively. In our preceding inquiry, we have effectively discerned the bioactivation center, denoted by the carbon atom between the unsaturated conjugated system and aliphatic linear tertiary amine. In the context of computational software, making minor adjustments or substituting the dimethylamino-butenoyl moiety throughout the drug design process may increase the metabolic stability and safety properties of new synthesized derivatives. The efficiency of utilizing different in silico software approaches to conserve resources and reduce effort was proved by the outcomes attained from in vitro incubation experiments and the use of NZT in silico software.

6.
J Pharmacol Toxicol Methods ; 128: 107540, 2024.
Article in English | MEDLINE | ID: mdl-38996943

ABSTRACT

X-376 is a novel anaplastic lymphoma kinase (ALK) inhibitor that is capable of penetrating the blood brain barrier. This makes it suitable for use in patients with ALK-positive non-small cell lung cancer (NSCLC) who have metastases in the central nervous system. This study developed a highly sensitive, fast, eco-friendly, and reliable UPLC-MS/MS approach to quantify X-376 in human liver microsomes (HLMs). This approach was used to evaluate X-376's metabolic stability in HLMs in vitro. The UPLC-MS/MS analytical technique validation followed US-FDA bio-analytical method validation guidelines. StarDrop software, containing P450 metabolic and DEREK modules, was utilized to scan X-376's chemical structure for metabolic lability and hazardous warnings. X-376 and Encorafenib (ENF as internal standard) were resoluted on the Eclipse Plus C18 column utilizing an isocratic mobile phase method. The X-376 calibration curve was linear from 1 to 3000 ng/mL. The precision and accuracy of this study's UPLC-MS/MS approach were tested for intra- and inter-day measurements. Inter-day accuracy was -1.32% to 9.36% while intra-day accuracy was -1.5% to 10.00%. The intrinsic clearance (Clint) and in vitro half-life (t1/2) of X-376 were 59.77 mL/min/kg and 13.56 min. The high extraction ratio of X-376 supports the 50 mg twice-daily dose for ALK-positive NSCLC and CNS metastases patients. In silico software suggests that simple structural changes to the piperazine ring or group substitution in drug design may improve metabolic stability and safety compared to X-376.


Subject(s)
Microsomes, Liver , Software , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Microsomes, Liver/metabolism , Chromatography, High Pressure Liquid/methods , Drug Stability , Computer Simulation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
7.
Mech Ageing Dev ; 220: 111960, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971236

ABSTRACT

Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.


Subject(s)
Hormesis , Humans , Animals , Healthy Aging/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy
8.
Open Med (Wars) ; 19(1): 20240988, 2024.
Article in English | MEDLINE | ID: mdl-38911256

ABSTRACT

Parkinson's disease (PD), characterized by tremor, slowness of movement, stiffness, and poor balance, is due to a significant loss of dopaminergic neurons in the substantia nigra pars compacta and dopaminergic nerve terminals in the striatum with deficit of dopamine. To date the mechanisms sustaining PD pathogenesis are under investigation; however, a solid body of experimental evidence involves neuroinflammation, mitochondrial dysfunction, oxidative stress, and apoptotic cell death as the crucial factors operating in the pathogenesis of PD. Nutrition is known to modulate neuroinflammatory processes implicated in the pathogenesis and progression of this neurodegenerative disorder. Consistent with this notion, the Burseraceae family, which includes the genera Boswellia and Commiphora, are attracting emerging interest in the treatment of a wide range of pathological conditions, including neuroinflammation and cognitive decline. Bioactive components present in these species have been shown to improve cognitive function and to protect neurons from degeneration in in vitro, animal, as well as clinical research. These effects are mediated through the anti-inflammatory, antiamyloidogenic, anti-apoptotic, and antioxidative properties of bioactive components. Although many studies have exploited possible therapeutic approaches, data from human studies are lacking and their neuroprotective potential makes them a promising option for preventing and treating major neurodegenerative disorders.

9.
RSC Adv ; 14(23): 16170-16193, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38769961

ABSTRACT

Acalabrutinib (CALQUENCE; ACB) is a Bruton tyrosine kinase inhibitor (BTKI) used to treat mantle cell lymphoma, small lymphocytic lymphoma (SLL), and chronic lymphocytic leukemia (CLL). On 21 November 2019, ACB was approved by the U.S. FDA for the use as a single therapy for the treatment of CLL/SLL. In silico studies were first done to propose vulnerable sites of metabolism and reactivity pathways by StarDrop software and Xenosite online software; respectively. ACB metabolites and stable adducts were characterized in vitro from rat liver microsomes (RLMs) using Ion Trap LC/MS. Generation of reactive intermediates (RIs) in the in vitro metabolism of ACB was investigated using glutathione, potassium cyanide, and methoxylamine as trapping nucleophiles for the RIs including iminopyridinone, iminium, and aldehyde, respectively, to form stable adducts that can be identified and characterized by Ion Trap LC/MS. Five phase I metabolites, seven 6-iminopyridin-3(6H)-one and five aldehyde RIs of ACB were identified. Based on literature reviews, the generation of RIs of ACB, and the subsequent drug-induced organ toxicity (DIOT) reactions may provide an explanation of ACB ADRs. Additional drug discovery investigations can be performed to facilitate the creation of novel medications with improved safety characteristics.

10.
Cell Prolif ; 57(6): e13606, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38454614

ABSTRACT

Glioblastoma (GBM), a WHO grade IV glioma, is a malignant primary brain tumour for which combination of surgery, chemotherapy and radiotherapy is the first-line approach despite adverse effects. Tumour microenvironment (TME) is characterized by an interplay of cells and soluble factors holding a critical role in neoplastic development. Significant pathophysiological changes have been found in GBM TME, such as glia activation and oxidative stress. Microglia play a crucial role in favouring GBM growth, representing target cells of immune escape mechanisms. Our study aims at analysing radiation-induced effects in modulating intercellular communication and identifying the basis of protective mechanisms in radiation-naïve GBM cells. Tumour cells were treated with conditioned media (CM) derived from 0, 2 or 15 Gy irradiated GBM cells or 0, 2 or 15 Gy irradiated human microglia. We demonstrated that irradiated microglia promote an increase of GBM cell lines proliferation through paracrine signalling. On the contrary, irradiated GBM-derived CM affect viability, triggering cell death mechanisms. In addition, we investigated whether these processes involve mitochondrial mass, fitness and oxidative phosphorylation and how GBM cells respond at these induced alterations. Our study suggests that off-target radiotherapy modulates microglia to support GBM proliferation and induce metabolic modifications.


Subject(s)
Brain Neoplasms , Cell Proliferation , Glioblastoma , Microglia , Tumor Microenvironment , Humans , Glioblastoma/radiotherapy , Glioblastoma/pathology , Glioblastoma/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/radiation effects , Cell Proliferation/radiation effects , Cell Line, Tumor , Culture Media, Conditioned/pharmacology , Tumor Microenvironment/radiation effects , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Cell Survival/radiation effects , Mitochondria/metabolism , Mitochondria/radiation effects
11.
Article in English | MEDLINE | ID: mdl-38423710

ABSTRACT

Ponatinib is a prescription medication used to treat a rare form of blood cancer called Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML) that is resistant to other treatments. It belongs to a class of drugs called tyrosine kinase inhibitors, which work by blocking abnormal proteins that promote the growth of cancer cells. In this chapter, the synthesis methods and physicochemical properties of ponatinib were reviewed, besides the characterization of the ponatinib structure using different techniques such as elemental analysis, IR, UV, (1H and 13C) NMR, MS, and XRD. Furthermore, the compendial method for analysis of ponatinib was not found, while the literature review of a non-compendial method for analysis of ponatinib, such as spectroscopic, chromatographic, and immunoassay methods, was covered. Moreover, pharmacology and biochemistry were surveyed in the pharmacokinetic and pharmacodynamic studies.


Subject(s)
Antineoplastic Agents , Imidazoles , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Pyridazines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
12.
Curr Neuropharmacol ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38073105

ABSTRACT

BACKGROUND: Meniere's disease (MD) is a cochlear neurodegenerative disease. Hearing loss appears to be triggered by oxidative stress in the ganglion neurons of the inner ear. OBJECTIVE: Here, we confirm the variation of markers of oxidative stress and inflammation in patients with Meniere and hypothesize that chronic treatment with Coriolus mushroom helps in the response to oxidative stress and acts on α-synuclein and on NF-kB-mediated inflammatory processes. METHODS: Markers of oxidative stress and inflammation were evaluated in MD patients with or without Coriolus treatment for 3 or 6 months. RESULTS: MD patients had a small increase in Nrf2, HO-1, γ-GC, Hsp70, Trx and sirtuin-1, which were further increased by Coriolus treatment, especially after 6 months. Increased markers of oxidative damage, such as protein carbonyls, HNE, and ultraweak chemiluminescence, associated with a decrease in plasma GSH/GSSG ratio, were also observed in lymphocytes from MD patients. These parameters were restored to values similar to the baseline in patients treated with Coriolus for both 3 and 6 months. Furthermore, treated MD subjects showed decreased expression of α-synuclein, GFAP and Iba-1 proteins and modulation of the NF-kB pathway, which were impaired in MD patients. These changes were greatest in subjects taking the supplements for 6 months. CONCLUSIONS: Our study suggests MD as a model of cochlear neurodegenerative disease for the identification of potent inducers of the Nrf2-vitagene pathway, able to reduce the deleterious consequences associated with neurodegenerative damage, probably by indirectly acting on α-synuclein expression and on inflammatory processes NF- kB-mediated.

13.
Medicina (Kaunas) ; 59(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38004094

ABSTRACT

There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.


Subject(s)
Deafness , Neurobiology , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Cochlea , Aging/physiology
14.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894699

ABSTRACT

Acalabrutinib, commercially known as Calquence®, is a pharmacological molecule that has robust inhibitory activity against Bruton tyrosine kinase. The medicine in question was carefully developed by the esteemed pharmaceutical company AstraZeneca. The FDA granted authorization on 21 November 2019 for the utilization of acalabrutinib (ACB) in the treatment of small lymphocytic lymphoma (SLL) or chronic lymphocytic leukemia (CLL) in adult patients. The aim of this study was to develop a UPLC-MS/MS method that is effective, accurate, environmentally sustainable, and has a high degree of sensitivity. The methodology was specifically developed with the intention of quantifying ACB in human liver microsomes (HLMs). The methodology described above was subsequently utilized to assess the metabolic stability of ACB in HLMs in an in vitro environment. The validation procedures for the UPLC-MS/MS method in the HLMs were conducted in accordance with the bioanalytical method validation criteria established by the U.S.- DA. The utilization of the StarDrop software (version 6.6), which integrates the P450 metabolic module and DEREK software (KB 2018 1.1), was employed for the purpose of evaluating the metabolic stability and identifying potential hazardous alarms associated with the chemical structure of ACB. The calibration curve, as established by the ACB, demonstrated a linear correlation across the concentration range of 1 to 3000 ng/mL in the matrix of HLMs. The present study conducted an assessment of the accuracy and precision of the UPLC-MS/MS method in quantifying inter-day and intra-day fluctuations. The inter-day accuracy demonstrated a spectrum of values ranging from -1.00% to 8.36%, whilst the intra-day accuracy presented a range of values spanning from -2.87% to 4.11%. The t1/2 and intrinsic clearance (Clint) of ACB were determined through in vitro testing to be 20.45 min and 39.65 mL/min/kg, respectively. The analysis concluded that the extraction ratio of ACB demonstrated a moderate level, thus supporting the recommended dosage of ACB (100 mg) to be administered twice daily for the therapeutic treatment of persons suffering from B-cell malignancies. Several computational tools have suggested that introducing minor structural alterations to the butynoyl group, particularly the alpha, beta-unsaturated amide moiety, or substituting this group during the drug design procedure, could potentially enhance the metabolic stability and safety properties of novel derivatives in comparison to ACB.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Benzamides , Pyrazines
15.
Ageing Res Rev ; 91: 102074, 2023 11.
Article in English | MEDLINE | ID: mdl-37709054

ABSTRACT

This commentary provides a novel synthesis of how biological systems adapt to a broad spectrum of environmental and age-related stresses that are underlying causes of numerous degenerative diseases and debilitating effects of aging. It proposes that the most fundamental, evolutionary-based integrative strategy to sustain and protect health is based on the concept of hormesis. This concept integrates anti-oxidant, anti-inflammatory and cellular repair responses at all levels of biological organization (i.e., cell, organ and organism) within the framework of biphasic dose responses that describe the quantitative limits of biological plasticity in all cells and organisms from bacteria and plants to humans. A major feature of the hormetic concept is that low levels of biological, chemical, physical and psychological stress upregulate adaptive responses that not only precondition, repair and restore normal functions to damaged tissues/organs but modestly overcompensate, reducing ongoing background damage, thereby enhancing health beyond that in control groups, lacking the low level "beneficial" stress. Higher doses of such stress often become counterproductive and eventually harmful. Hormesis is active throughout the life-cycle and can be diminished by aging processes affecting the onset and severity of debilitating conditions/diseases, especially in elderly subjects. The most significant feature of the hormetic dose response is that the limits of biological plasticity for adaptive processes are less than twice that of control group responses, with most, at maximum, being 30-60 % greater than control group values. Yet, these modest increases can make the difference between health or disease and living or dying. The quantitative features of these adaptive hormetic dose responses are also independent of mechanism. These features of the hormetic dose response determine the capacity to which systems can adapt/be protected, the extent to which biological performance (e.g., memory, resistance to injury/disease, wound healing, hair growth or lifespan) can be enhanced/extended and the extent to which synergistic interactions may occur. Hormesis defines the quantitative rules within which adaptive processes operate and is central to evolution and biology and should become transformational for experimental concepts and study design strategies, public health practices and a vast range of therapeutic strategies and interventions.


Subject(s)
Hormesis , Longevity , Humans , Aged , Hormesis/physiology , Aging/physiology , Adaptation, Physiological , Antioxidants
16.
Molecules ; 28(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37241965

ABSTRACT

Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry.


Subject(s)
Piperazines , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Piperazines/chemistry , Pyridones/analysis , Glutathione/metabolism , Cyanides/analysis , Aldehydes/analysis , Microsomes, Liver/metabolism
17.
Int J Mol Sci ; 24(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37108102

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence rises with age. Inflammation and altered antioxidant systems play essential roles in the genesis of neurodegenerative diseases. In this work, we looked at the effects of MemophenolTM, a compound rich in polyphenols derived from French grape (Vitis vinifera L.) and wild North American blueberry (Vaccinium angustifolium A.) extracts, in a rat model of AD. Methods: For 60 days, the animals were administered with AlCl3 (100 mg/kg, orally) and D-galactose (60 mg/kg, intraperitoneally), while from day 30, MemophenolTM (15 mg/kg) was supplied orally for 30 consecutive days. AlCl3 accumulates mainly in the hippocampus, the main part of the brain involved in memory and learning. Behavioral tests were performed the day before the sacrifice when brains were collected for analysis. Results: MemophenolTM decreased behavioral alterations and hippocampus neuronal degeneration. It also lowered phosphorylated Tau (p-Tau) levels, amyloid precursor protein (APP) overexpression, and ß-amyloid (Aß) buildup. Furthermore, MemophenolTM reduced the pro-oxidative and pro-inflammatory hippocampus changes caused by AD. Our finding, relevant to AD pathogenesis and therapeutics, suggests that MemophenolTM, by modulating oxidative and inflammatory pathways and by regulating cellular brain stress response mechanisms, protects against the behavioral and histopathological changes associated with AD.


Subject(s)
Alzheimer Disease , Rats , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Oxidative Stress , Brain/metabolism , Inflammation/metabolism , Disease Models, Animal
18.
Comb Chem High Throughput Screen ; 26(7): 1437-1449, 2023.
Article in English | MEDLINE | ID: mdl-36043774

ABSTRACT

BACKGROUND: The lack of anti-COVID-19 treatment to date warrants urgent research into potential therapeutic targets. Virtual drug screening techniques enable the identification of novel compounds that target the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Main Protease (Mpro). OBJECTIVE: The binding of the halogenated compounds to Mpro may inhibit the replication and transcription of SARS-CoV-2 and, ultimately, stop the viral life cycle. In times of dire need for anti- COVID-19 treatment, this study lays the groundwork for further experimental research to investigate these compounds' efficacy and potential medical uses to treat COVID-19. METHODS: New heterocyclic compounds were synthesized through the first reaction of cyclohexane- 1, 3-dione (1a) or dimedone (1b) with trichloroacetonitrile (2) to give the 2,2,2-trichloroethylidene) cyclohexane-1,3-dione derivatives 3a and 3b, respectively. The latter compounds underwent a series of heterocyclization reactions to produce biologically active compounds. RESULTS: Novel compounds, including fused thiophene, pyrimidine and pyran derivatives, were synthesized and tested against human RNA N7-MTase (hRNMT) and selected viral N7-MTases such as SARS-CoV nsp14 and Vaccinia D1-D12 complex to evaluate their specificity and their molecular modeling was also studied in the aim of producing anti-COVID-19 target molecules. CONCLUSION: The results showed that compounds 10a, 10b, 10c, 10e, 10f, 10g and 10h showed high % inhibitions against SARs-Covnsp 14. Whereas compounds 5a, 7a, 8b, 10a, 10b, 10c and 10i showed high inhibitions against hRNMT. This study explored the binding affinity of twenty-two halogenated compounds to the SARS-CoV-2 MPro and discovered fifteen compounds with higher binding affinity than Nelfinavir, of which three showed remarkable results. c-Met kinase inhibitions of 10a, 10f, 10g and 10h showed that all compounds exhibited higher inhibitions than the reference Foretinib.


Subject(s)
COVID-19 , Humans , Molecular Docking Simulation , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/chemistry , Cyclohexanes , Protease Inhibitors/pharmacology , Molecular Dynamics Simulation
19.
Front Physiol ; 14: 1320960, 2023.
Article in English | MEDLINE | ID: mdl-38250661

ABSTRACT

Traumatic brain injury (TBI) is described as a structural damage or physiological disturbance of brain function that occurs after trauma and causes disability or death in people of all ages. New treatment targets for TBI are being explored because current medicines are frequently ineffectual and poorly tolerated. There is increasing evidence that following TBI, there are widespread changes in autophagy-related proteins in both experimental and clinical settings. The current study investigated if Boswellia Sacra Gum Resin (BSR) treatment (500 mg/kg) could modulate post-TBI neuronal autophagy and protein expression, as well as whether BSR could markedly improve functional recovery in a mouse model of TBI. Taken together our results shows for the first time that BSR limits histological alteration, lipid peroxidation, antioxidant, cytokines release and autophagic flux alteration induced by TBI.

SELECTION OF CITATIONS
SEARCH DETAIL