Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood ; 137(18): 2450-2462, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33512449

ABSTRACT

Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with a broad clinical spectrum. Identification of molecular and functional bases of these disorders is important for diagnosis, treatment, and an understanding of the human immune response. We identified 6 unrelated males with neutropenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure associated with 3 different variants in the X-linked gene TLR8, encoding the endosomal Toll-like receptor 8 (TLR8). Interestingly, 5 patients had somatic variants in TLR8 with <30% mosaicism, suggesting a dominant mechanism responsible for the clinical phenotype. Mosaicism was also detected in skin-derived fibroblasts in 3 patients, demonstrating that mutations were not limited to the hematopoietic compartment. All patients had refractory chronic neutropenia, and 3 patients underwent allogeneic hematopoietic cell transplantation. All variants conferred gain of function to TLR8 protein, and immune phenotyping demonstrated a proinflammatory phenotype with activated T cells and elevated serum cytokines associated with impaired B-cell maturation. Differentiation of myeloid cells from patient-derived induced pluripotent stem cells demonstrated increased responsiveness to TLR8. Together, these findings demonstrate that gain-of-function variants in TLR8 lead to a novel childhood-onset IEI with lymphoproliferation, neutropenia, infectious susceptibility, B- and T-cell defects, and in some cases, bone marrow failure. Somatic mosaicism is a prominent molecular mechanism of this new disease.


Subject(s)
Bone Marrow Failure Disorders/pathology , Gain of Function Mutation , Immunologic Deficiency Syndromes/pathology , Inflammation/pathology , Mosaicism , Pancytopenia/pathology , Toll-Like Receptor 8/genetics , Adolescent , Adult , B-Lymphocytes/pathology , Bone Marrow Failure Disorders/etiology , Bone Marrow Failure Disorders/metabolism , Cell Differentiation , Child , Child, Preschool , Cytokines/metabolism , Female , Follow-Up Studies , Humans , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/metabolism , Infant , Inflammation/etiology , Inflammation/metabolism , Lymphocyte Activation , Male , Pancytopenia/etiology , Pancytopenia/metabolism , Pedigree , Prognosis , T-Lymphocytes/immunology , Young Adult
3.
Mol Genet Metab ; 120(3): 288-294, 2017 03.
Article in English | MEDLINE | ID: mdl-28041820

ABSTRACT

Combined alpha-delta platelet storage pool deficiency is characterized by the absence or reduction in the number of both alpha granules and dense bodies. This disorder can have variable severity as well as a variable inheritance pattern. We describe two patients from unrelated families with combined alpha-delta storage pool deficiency due to mutations in GFI1B, a zinc finger protein known to act as a transcriptional repressor of various genes. We demonstrate that this disease is associated with either a heterozygous mutation (de novo or familial) abrogating the binding of the zinc fingers with the promoter of its target genes, or by hypomorphic biallelic mutations in GFI1B leading to autosomal recessive inheritance.


Subject(s)
Mutation , Platelet Storage Pool Deficiency/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Sequence Analysis, DNA/methods , Adolescent , Child , Genetic Predisposition to Disease , Humans , Male , Pedigree , Protein Binding , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Zinc Fingers
4.
Am J Hum Genet ; 95(1): 96-107, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24931394

ABSTRACT

Human phosphoglucomutase 3 (PGM3) catalyzes the conversion of N-acetyl-glucosamine (GlcNAc)-6-phosphate into GlcNAc-1-phosphate during the synthesis of uridine diphosphate (UDP)-GlcNAc, a sugar nucleotide critical to multiple glycosylation pathways. We identified three unrelated children with recurrent infections, congenital leukopenia including neutropenia, B and T cell lymphopenia, and progression to bone marrow failure. Whole-exome sequencing demonstrated deleterious mutations in PGM3 in all three subjects, delineating their disease to be due to an unsuspected congenital disorder of glycosylation (CDG). Functional studies of the disease-associated PGM3 variants in E. coli cells demonstrated reduced PGM3 activity for all mutants tested. Two of the three children had skeletal anomalies resembling Desbuquois dysplasia: short stature, brachydactyly, dysmorphic facial features, and intellectual disability. However, these additional features were absent in the third child, showing the clinical variability of the disease. Two children received hematopoietic stem cell transplantation of cord blood and bone marrow from matched related donors; both had successful engraftment and correction of neutropenia and lymphopenia. We define PGM3-CDG as a treatable immunodeficiency, document the power of whole-exome sequencing in gene discoveries for rare disorders, and illustrate the utility of genomic analyses in studying combined and variable phenotypes.


Subject(s)
Bone Diseases, Developmental/genetics , Congenital Disorders of Glycosylation/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , Phosphoglucomutase/genetics , Female , Humans , Male , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL