Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(19)2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39404287

ABSTRACT

Climatic changes are reaching alarming levels globally, seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality, transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions, making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons, hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water, with solar hydrogen production-using solar light to split water-standing out as a cost-effective and environmentally friendly approach. However, the widespread adoption of hydrogen energy is challenged by transportation and storage issues, as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution, providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods, as it uses self-generated power. Similarly, solid storage of hydrogen is also attractive in many ways, including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially, but once the materials and methods are established, they will become more attractive considering rising fuel prices, depletion of fossil fuel resources, and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy, producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions, solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient, safe, and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques, this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage, focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between -40 and 60 °C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage, and discusses current challenges in hydrogen generation and storage. This includes material selection, and the structural and chemical modifications needed for optimal performance and potential applications.

2.
ACS Appl Mater Interfaces ; 16(39): 52739-52752, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39287563

ABSTRACT

In this study, we prepared a hybrid film incorporating the MnFeO3-decorated conducting two-dimensional (2D) MXene sheet-suspended [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) electron transfer layer (ETL) for the perovskite solar cells (PSCs) and detectors. The incorporation of MXene-MnFeO3 with the PCBM ETL could drive exceptional conducting features for the PSCs. Moreover, the presence of MXene-MnFeO3 facilitated superior charge transfer pathways, thereby enhancing the electron extraction and collection processes. This enhancement was directed to improve the electron mobility within the device, resulting in high photocurrents. The designed interface engineering with the MXene-MnFeO3 nanocomposite-tuned PCBM ETL has produced a remarkable power conversion efficiency of 17.79% ± 0.27. Moreover, X-ray detectors employing PCBM modulated with the MXene-MnFeO3 ETL achieved notable performance metrics including 18.47 µA/cm2 CCD-DCD, 5.53 mA/Gy·cm2 sensitivity, 7.64 × 10-4 cm2/V·s electron mobility, and 1.51 × 1015 cm2/V·s trap density.

3.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998734

ABSTRACT

The reuse of waste materials has recently become appealing due to pollution and cost reduction factors. Using waste materials can reduce environmental pollution and product costs, thus promoting sustainability. Approximately 95% of calcium carbonate-containing waste eggshells end up in landfills, unused. These eggshells, a form of bio-waste, can be repurposed as catalytic electrode material for various applications, including supercapacitors, after being converted into CaO. Similarly, used waste battery electrode materials pose environmental hazards if not properly recycled. Various types of batteries, particularly lithium-ion batteries, are extensively used worldwide. The recycling of used lithium-ion batteries has become less important considering its low economic benefits. This necessitates finding alternative methods to recover and reuse the graphite rods of spent batteries. Therefore, this study reports the conversion of waste eggshell into calcium oxide by high-temperature calcination and extraction of nanographite from spent batteries for application in energy storage fields. Both CaO and CaO/graphite were characterized for their structural, morphological, and chemical compositions using XRD, SEM, TEM, and XPS techniques. The prepared CaO/graphite nanocomposite material was evaluated for its efficiency in electrochemical supercapacitor applications. CaO and its composite with graphite powder obtained from used lithium-ion batteries demonstrated improved performance compared to CaO alone for energy storage applications. Using these waste materials for electrochemical energy storage and conversion devices results in cheaper, greener, and sustainable processes. This approach not only aids in energy storage but also promotes sustainability through waste management by reducing landfills.

4.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674968

ABSTRACT

Polymethyl methacrylate (PMMA) is an interesting polymer employed in various applications due to its outstanding properties. However, its electrical and mechanical properties can be further improved by incorporating nanoparticles, and in particular, PMMA nanocomposite with nanoparticles provides various multifunctional properties. This work reports PMMA nanocomposite preparation and structural and optical characterizations incorporating carbon nanotubes (CNTs), TiO2 nanoparticles, and carbon quantum dots (CQDs). CNT/PMMA, TiO2/PMMA, and CQD/PMMA nanocomposite freestanding films were prepared using a simple solution method. Various properties of the prepared composite films were analyzed using scanning electron microscopy, X-ray diffraction, photoluminescence, Fourier transform infrared, and UV-Vis and Raman spectroscopy. Optical parameters and photocatalytic dye degradation for the films are reported, focusing on the properties of the materials. The CNT/PMMA, TiO2/PMMA, and CQD/PMMA films achieved, respectively, good electrical conductivity, photodegradation, and fluorescence compared with other composite films.

5.
ACS Appl Mater Interfaces ; 14(39): 44516-44526, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36162987

ABSTRACT

Although they are not as favorable as other influential gas sensors, metal-oxide semiconductor-based chemiresistors ensure minimal surface reactivity, restricting their gas selectivity, gas response, and reaction kinetics, particularly when functioning at room temperature (RT). A hybrid design, which includes metal-oxide/carbon nanostructures and passivation with specific gas filtration layers, can address the concerns of surface reactivity. We present a novel hierarchical nanostructured zinc oxide (ZnO), decorated with graphitic carbon (GC) and synthesized via a wet-chemical strategy, which is then followed by the self-assembly of a zeolitic imidazolate framework (ZIF-8). Because of its large surface area, high porosity, and efficient inspection of other analyte (interfering) gases, the ZnO@GC can provide intensified surface reactivity at RT. In the present study, such a hybrid sensor confirmed extraordinary gas sensing properties, which was characterized by excellent H2 selectivity, fast response, rapid recovery kinetics, and high gas response (ΔR/R0 ∼ 124.6%@10 ppm), particularly in extremely humid environments. The results reveal that adsorption sites provided by the ZIF-8 template-based ZnO@GC frameworks facilitate the adsorption and desorption of H2.

6.
Plants (Basel) ; 10(4)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916375

ABSTRACT

This study aimed to establish a rapid in vitro plant regeneration method from rhizome buds of Kaempferia parviflora to obtain the valuable secondary metabolites with antioxidant and enzyme inhibition properties. The disinfection effect of silver oxide nanoparticles (AgO NPs) on rhizome and effects of plant growth regulators on shoot multiplication and subsequent rooting were investigated. Surface sterilization of rhizome buds with sodium hypochlorite was insufficient to control contamination. However, immersing rhizome buds in 100 mg L-1 AgO NPs for 60 min eliminated contamination without affecting the survival of explants. The number of shoots (12.2) produced per rhizome bud was higher in Murashige and Skoog (MS) medium containing 8 µM of 6-Benzyladenine (6-BA) and 0.5 µM of Thidiazuron (TDZ) than other treatments. The highest number of roots (24), with a mean root length of 7.8 cm and the maximum shoot length (9.8 cm), were obtained on medium MS with 2 µM of Indole-3-butyric acid (IBA). A survival rate of 98% was attained when plantlets of K. parviflora were acclimatized in a growth room. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to determine the chemical profile of K. parviflora leaf extracts. Results showed that several biologically active flavonoids reported in rhizomes were also present in leaf tissues of both in vitro cultured and ex vitro (greenhouse-grown) plantlets of K. parviflora. We found 40 and 36 compounds in in vitro cultured and ex vitro grown leaf samples, respectively. Greenhouse leaves exhibited more potent antioxidant activities than leaves from in vitro cultures. A higher acetylcholinesterase inhibitory ability was obtained for greenhouse leaves (1.07 mg/mL). However, leaves from in vitro cultures exhibited stronger butyrylcholinesterase inhibitory abilities. These results suggest that leaves of K. parviflora, as major byproducts of black ginger cultivation, could be used as valuable alternative sources for extracting bioactive compounds.

7.
ACS Omega ; 3(5): 5799-5807, 2018 May 31.
Article in English | MEDLINE | ID: mdl-31458780

ABSTRACT

A cost-effective solution-based synthesis route to grow MoSe2 thin films with vertically aligned atomic layers, thereby maximally exposing the edge sites on the film surface as well as enhancing charge transport to the electrode, is demonstrated for hydrogen evolution reaction. The surface morphologies of thin films are investigated by scanning electron microscopy and atomic force microscopy, and transmission electron microscopy analyses confirm the formation of the vertically aligned layered structure of MoSe2 in those films, with supporting evidences obtained by Raman. Additionally, their optical and compositional properties are investigated by photoluminescence and X-ray photoelectron spectroscopy, and their electrical properties are evaluated using bottom-gate field-effect transistors. The resultant pristine MoSe2 thin film exhibited low overpotential of 88 mV (at 10 mA·cm-2) and a noticeably high exchange current density of 0.845 mA·cm-2 with excellent stability, which is superior to most of other reported MoS2 or MoSe2-based catalysts, even without any other strategies such as doping, phase transformation, and integration with other materials.

SELECTION OF CITATIONS
SEARCH DETAIL