Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Nanotechnol ; 4(6): 373-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19498399

ABSTRACT

The self-assembly of organic molecules on surfaces is a promising approach for the development of nanoelectronic devices. Although a variety of strategies have been used to establish stable links between molecules, little is known about the electrical conductance of these links. Extended electronic states, a prerequisite for good conductance, have been observed for molecules adsorbed on metal surfaces. However, direct conductance measurements through a single layer of molecules are only possible if the molecules are adsorbed on a poorly conducting substrate. Here we use a nanoscale four-point probe to measure the conductivity of a self-assembled layer of cobalt phthalocyanine on a silver-terminated silicon surface as a function of thickness. For low thicknesses, the cobalt phthalocyanine molecules lie flat on the substrate, and their main effect is to reduce the conductivity of the substrate. At higher thicknesses, the cobalt phthalocyanine molecules stand up to form stacks and begin to conduct. These results connect the electronic structure and orientation of molecular monolayer and few-layer systems to their transport properties, and should aid in the rational design of future devices.

2.
Phys Rev Lett ; 100(8): 086101, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18352637

ABSTRACT

First-principles phase diagrams of bismuth-stabilized GaAs- and InP(100) surfaces demonstrate for the first time the presence of anomalous (2x1) reconstructions, which disobey the common electron counting principle. Combining these theoretical results with our scanning-tunneling-microscopy and photoemission measurements, we identify novel (2x1) surface structures, which are composed of symmetric Bi-Bi and asymmetric mixed Bi-As and Bi-P dimers, and find that they are stabilized by stress relief and pseudogap formation.

3.
Nat Nanotechnol ; 2(3): 167-70, 2007 Mar.
Article in English | MEDLINE | ID: mdl-18654247

ABSTRACT

Coarsening is a ubiquitous phenomenon that underpins countless processes in nature, including epitaxial growth, the phase separation of alloys, polymers and binary fluids, the growth of bubbles in foams, and pattern formation in biomembranes. Here we show, in the first real-time experimental study of the evolution of an adsorbed colloidal nanoparticle array, that tapping-mode atomic force microscopy (TM-AFM) can drive the coarsening of Au nanoparticle assemblies on silicon surfaces. Although the growth exponent has a strong dependence on the initial sample morphology, our observations are largely consistent with modified Ostwald ripening processes. To date, ripening processes have been exclusively considered to be thermally activated, but we show that nanoparticle assemblies can be mechanically coerced towards equilibrium, representing a new approach to directed coarsening. This strategy enables precise control over the evolution of micro- and nanostructures.


Subject(s)
Crystallization/methods , Gold Colloid/chemistry , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Macromolecular Substances/chemistry , Materials Testing , Mechanics , Molecular Conformation , Particle Size , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL