Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
RSC Adv ; 14(19): 13306-13310, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38655482

ABSTRACT

2-Aryloxyquinolines are well known for various biological activities. In this report, we have developed a novel protocol for introducing an acetoxy functional group on the aryl sp2 carbon of 2-aryloxyquinoline-3-carbaldehyde using a palladium catalyst for the first time. Interestingly, this C-H acetoxylation reaction is highly chemo- and site-selective. By modifying the reaction conditions, mono or di ortho-C-H acetoxylation products have been synthesized selectively with good yields and with good functional group tolerance.

2.
Acta Crystallogr C Struct Chem ; 80(Pt 4): 129-142, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38577890

ABSTRACT

This report presents a comprehensive investigation into the synthesis and characterization of Schiff base compounds derived from benzenesulfonamide. The synthesis process, involved the reaction between N-cycloamino-2-sulfanilamide and various substituted o-salicylaldehydes, resulted in a set of compounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized compounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substantiated by molecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The exploration of frontier molecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyrrolidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 20, emerged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piperidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed remarkeable inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluorouracil. The exploration of molecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of molecules.


Subject(s)
Colonic Neoplasms , Schiff Bases , Humans , Schiff Bases/chemistry , Models, Molecular , Molecular Conformation , Crystallography, X-Ray , Spectroscopy, Fourier Transform Infrared , Hydrogen Bonding , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL