Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Int J Mol Sci ; 25(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39337377

ABSTRACT

The demand for terrestrial snails as a food source is still on the increase globally, yet this has been overlooked in disease epidemiology and the spread of antimicrobial resistance. This study conducted genomic analyses of twenty Citrobacter portucalensis strains isolated from live edible snails traded in two hubs. The isolates were subjected to MALDI-TOF MS, antimicrobial resistance testing, whole genome sequencing, and analyses for in-depth characterization. The findings disclosed that seventeen strains across the two trading hubs were distinct from previously reported ones. Four isolates were found to share the same sequence type (ST881). Genome-based comparison suggests a clonal transmission of strains between snails traded in these hubs. All the isolates across the two hubs harbored similar variety of antimicrobial resistance genes, with notable ones being blaCMY and qnrB. Sixteen isolates (80%) expressed phenotypic resistance to second-generation cephalosporins, while eleven isolates (55%) exhibited resistance to third-generation cephalosporins. This report of multi-drug-resistant C. portucalensis strains in edible snails highlights significant concerns for food safety and clinical health because of the potential transmission to humans. Enhanced surveillance and stringent monitoring by health authorities are essential to evaluate the impact of these strains on the burden of antimicrobial resistance and to address the associated risk.


Subject(s)
Citrobacter , Drug Resistance, Multiple, Bacterial , Genomics , Snails , Animals , Drug Resistance, Multiple, Bacterial/genetics , Snails/microbiology , Citrobacter/genetics , Citrobacter/drug effects , Genomics/methods , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Microbial Sensitivity Tests , Whole Genome Sequencing , Phylogeny
2.
Antibiotics (Basel) ; 13(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39200033

ABSTRACT

Staphylococcus spp. poses a significant threat to human and animal health due to their capacity to cause a wide range of infections in both. In this study, resistance genes conferring antibiotic resistance in Staphylococcus spp. and Mammaliicoccus sciuri isolates from humans and poultry in Edo state, Nigeria, were investigated. In April 2017, 61 Staphylococcus spp. isolates were obtained from urine, wounds, nasal and chicken fecal samples. Species identification was carried out by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Antimicrobial susceptibility testing was performed using the Kirby-Bauer method for 16 antibiotics. Whole-genome sequencing was used for characterization of the isolates. The 61 investigated isolates included Staphylococcus aureus, S. arlettae, M. sciuri, S. haemolyticus, and S. epidermidis. A total of 47 isolates (77%) belonged to human samples and 14 (23%) isolates were collected from poultry samples. All were phenotypically resistant to at least three antimicrobial(s). Multiple resistance determinants were detected in the human and poultry isolates analyzed. Phylogenetic analysis revealed close relatedness among the isolates within each species for S. arlettae, M. sciuri, and S. haemolyticus, respectively. This study delivered comprehensive genomic insights into antibiotic-resistant Staphylococcus species and M. sciuri isolates from human and poultry sources in Edo state, Nigeria, from a One Health perspective.

3.
Euro Surveill ; 29(23)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847119

ABSTRACT

BackgroundThe COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.AimWe discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.MethodsThe SARSeq pipeline was set up as a collaboration between private and public clinical diagnostic laboratories, a public health agency, and an academic institution. Representative SARS-CoV-2 positive specimens from each of the nine Austrian provinces were obtained from SARS-CoV-2 testing laboratories and processed centrally in an academic setting for S-gene sequencing and analysis.ResultsSARS-CoV-2 sequences from up to 2,880 cases weekly resulted in 222,784 characterised case samples in January 2021-March 2023. Consequently, Austria delivered the fourth densest genomic surveillance worldwide in a very resource-efficient manner. While most SARS-CoV-2 variants during the study showed comparable kinetic behaviour in all of Austria, some, like Beta, had a more focused spread. This highlighted multifaceted aspects of local population-level acquired immunity. The nationwide surveillance system enabled reliable nowcasting. Measured early growth kinetics of variants were predictive of later incidence peaks.ConclusionWith low automation, labour, and cost requirements, SARSeq is adaptable to monitor other pathogens and advantageous even for resource-limited countries. This multiplexed genomic surveillance system has potential as a rapid response tool for future emerging threats.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , Humans , Austria/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , COVID-19/diagnosis , Mutation , Genomics/methods , Pandemics , Evolution, Molecular , Whole Genome Sequencing/methods
4.
Lancet Microbe ; 4(12): e1015-e1023, 2023 12.
Article in English | MEDLINE | ID: mdl-37979591

ABSTRACT

BACKGROUND: The aim of external quality assessment (EQA) schemes is to evaluate the analytical performance of laboratories and test systems in a near-to-real-life setting. This monitoring service provides feedback to participant laboratories and serves as a control measure for the epidemiological assessment of the regional incidence of a pathogen, particularly during epidemics. Using data from EQA schemes implemented as a result of the intensive effort to monitor SARS-CoV-2 infections in Austria, we aimed to identify factors that explained the variation in laboratory performance for SARS-CoV-2 detection over the course of the COVID-19 pandemic. METHODS: For this observational study, we retrospectively analysed 6308 reverse transcriptase quantitative PCR (RT-qPCR) test results reported by 191 laboratories on 71 samples during 14 rounds of three SARS-CoV-2 pathogen detection EQA schemes in Austria between May 18, 2020, and Feb 20, 2023. We calculated the overall rates of false and true-negative, false and true-positive, and inconclusive results. We then assessed laboratory performance by estimating the sensitivity by testing whether significant variation in the odds of obtaining a true-positive result could be explained by virus concentration, laboratory type, or assay format. We also assessed whether laboratory performance changed over time. FINDINGS: 4371 (93·7%) of 4663 qPCR test results were true-positive, 241 (5·2%) were false-negative, and 51 (1·1%) were inconclusive. The mean per-sample sensitivity was 99·7% in samples with high virus concentrations (1383 [99·4%] true-positive, three [0·2%] false-negative, and five [0·4%] inconclusive results for 1391 tests in which the sample cycle threshold was ≤32), whereas detection rates were lower in samples with low virus concentrations (mean per-sample sensitivity 92·5%; 2988 [91·3%] true-positive, 238 [7·3%] false-negative, and 46 [1·4%] inconclusive results for 3272 tests in which the cycle threshold was >32). Of the 1645 results expected to be negative, 1561 (94·9%) were correctly reported as negative, 10 (0·6%) were incorrectly reported as positive, and 74 (4·5%) were reported as inconclusive. Notably, the overall performance of the tests did not change significantly over time. The odds of reporting a correct result were 2·94 (95% CI 1·75-4·96) times higher for a medical laboratory than for a non-medical laboratory, and 4·60 (2·91-7·41) times greater for automated test systems than for manual test systems. Automated test systems within medical laboratories had the highest sensitivity when compared with systems requiring manual intervention in both medical and non-medical laboratories. INTERPRETATION: High rates of false-negativity in all PCR analyses evaluated in comprehensive, multiple, and repeated EQA schemes outline a clear path for improvement in the future. The performance of some laboratories (eg, non-medical laboratories or those using non-automated test systems) should receive additional scrutiny-for example, by requiring additional EQA schemes for certification or accreditation-if the aggregated data from EQA rounds suggest lower sensitivity than that recorded by others. This strategy will provide assurances that epidemiological data as a whole are reliable when testing on such a large scale. Although performance did not improve over time, we cannot exclude extenuating circumstances-such as shortages and weakened supply chains-that could have prevented laboratories from seeking alternative methods to improve performance. FUNDING: None.


Subject(s)
COVID-19 , Nucleic Acids , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , Retrospective Studies , Pandemics , Austria/epidemiology
5.
Access Microbiol ; 5(7)2023.
Article in English | MEDLINE | ID: mdl-37601433

ABSTRACT

The emergence of antibiotic resistance in livestock, especially food-producing animals, is of major public health importance as a result of the possibility of these bacteria entering the food chain. In this study, the genetic characteristics of antibiotic-resistant Escherichia coli and Klebsiella spp. isolates from humans and poultry in Edo state, Nigeria, were investigated. In April 2017, 45 Klebsiella spp. and 46 E. coli isolates were obtained from urine, clinical wounds, nasal and chicken faecal samples. Isolates were recovered and identified as previously described. Species identification was achieved by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and ribosomal multilocus sequence typing. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer method for 12 antibiotics. A double disc synergy test was used to screen for extended-spectrum beta-lactamse (ESBL) production. Whole genome sequencing was performed for strain characterization of the isolates. Thirteen Klebsiella spp. isolates yielded positive results by the ESBL phenotypic test and harboured ESBL genes. Of the 46 E. coli isolates, 21 human and 13 poultry isolates were resistant to at least one of the tested antibiotics. Four human E. coli isolates harboured ESBL genes and revealed positive results when applying ESBL double disc synergy tests. ESBL genes in the Klebsiella spp. and E. coli isolates include bla CTX-M-15 and bla SHV-28. Whole genome-based core gene multilocus sequence typing of the Klebsiella spp. and E. coli isolates revealed a close relatedness among the isolates. An integrated 'One Health' surveillance system is required to monitor transmission of antimicrobial resistance in Nigeria.

6.
Lancet Microbe ; 4(7): e552-e562, 2023 07.
Article in English | MEDLINE | ID: mdl-37156257

ABSTRACT

During an epidemic, individual test results form the basis of epidemiological indicators such as case numbers or incidence. Therefore, the accuracy of measures derived from these indicators depends on the reliability of individual results. In the COVID-19 pandemic, monitoring and evaluating the performance of the unprecedented number of testing facilities in operation, and novel testing systems in use, was urgently needed. External quality assessment (EQA) schemes are unique sources of data reporting on testing performance, and their providers are recognised contacts and support for test facilities (for technical-analytical topics) and health authorities (for planning the monitoring of infection diagnostics). To identify information provided by SARS-CoV-2 genome detection EQA schemes that is relevant for public health microbiology, we reviewed the current literature published in PubMed between January, 2020, and July, 2022. We derived recommendations for EQA providers and their schemes for best practices to monitor pathogen-detection performance in future epidemics. We also showed laboratories, test facilities, and health authorities the information and benefits they can derive from EQA data, and from the non-EQA services of their providers.


Subject(s)
COVID-19 , Pandemics , Humans , Reproducibility of Results , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Laboratories
7.
iScience ; 25(11): 105380, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36373097

ABSTRACT

This study aimed to determine the impact of ultra-rapid rollout vaccination on incidence of SARS-CoV-2 infection. Vaccination with BNT162b2 was provided to 66.9% of eligible residents of the Schwaz district in Tyrol, Austria, within six days per dose (first dose: 11-16 March 2021, second dose: 8-13 April 2021). Of 11,955 individuals enrolled at nine vaccination centers (median age 44.6 years; 51.3% female), 71 had incident SARS-CoV-2 over a six-month follow-up. Incidence rates per 100,000 person-weeks were 92.3 (95% confidence interval [CI]: 70.8-120.2) at weeks 1-5 and 6.4 (3.9-10.4) at ≥6 weeks after dose 1. In these two periods, effectiveness of the vaccination campaign to reduce incident SARS-CoV-2 was 58.6% (50.8%-65.2%) and 91.1% (89.6%-92.3%) in study participants and 28.3% (23.1%-33.0%) and 64.0% (61.7%-66.1%) in the Schwaz district, compared with districts with slower vaccination rollout. Therefore, the vaccination campaign in the Schwaz district illustrates the impact of accelerated vaccination rollout in controlling the pandemic.

8.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232576

ABSTRACT

Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain.


Subject(s)
Anti-Bacterial Agents , Veterinary Drugs , Aminoglycosides , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Animals , Anti-Bacterial Agents/pharmacology , Austria , Bacteria/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Humans , Microbial Sensitivity Tests , Tetracyclines , Wastewater , Whole Genome Sequencing
9.
Microbiol Resour Announc ; 11(10): e0063422, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36135384

ABSTRACT

We describe the draft genome sequence and annotation of Citrobacter cronae strain Awk (sequence type 880), recovered from fresh edible snails (Achatina achatina) commercially available in Awka Metropolis, Nigeria. The genome contains 4,629 protein-coding genes, 107 RNA-coding genes, and several antimicrobial resistance genes, including blaCMY-98 and qnrB12.

10.
Emerg Infect Dis ; 28(8): 1694-1698, 2022 08.
Article in English | MEDLINE | ID: mdl-35876744

ABSTRACT

We investigated genomic determinants of antimicrobial resistance in 1,318 Neisseria gonorrhoeae strains isolated in Austria during 2016-2020. Sequence type (ST) 9363 and ST11422 isolates had high rates of azithromycin resistance, and ST7363 isolates correlated with cephalosporin resistance. These results underline the benefit of genomic surveillance for antimicrobial resistance monitoring.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Austria/epidemiology , Azithromycin/pharmacology , Cephalosporins/pharmacology , Drug Resistance, Bacterial , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny
11.
Nat Biotechnol ; 40(12): 1814-1822, 2022 12.
Article in English | MEDLINE | ID: mdl-35851376

ABSTRACT

SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022. Our system of variant quantification in sewage pipeline designed for robustness (termed VaQuERo) enabled us to deduce the spatiotemporal abundance of predefined variants from complex wastewater samples. These results were validated against epidemiological records of >311,000 individual cases. Furthermore, we describe elevated viral genetic diversity during the Delta variant period, provide a framework to predict emerging variants and measure the reproductive advantage of variants of concern by calculating variant-specific reproduction numbers from wastewater. Together, this study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without extensive individual monitoring.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Wastewater , SARS-CoV-2/genetics , COVID-19/epidemiology , RNA, Viral
12.
Microbiol Spectr ; 10(3): e0275721, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35678576

ABSTRACT

Due to increasing rates of antimicrobial resistance (AMR) in Neisseria gonorrhoeae, alternative treatments should be considered. To assess rifampicin's potential as a gonorrhea treatment, we used rpoB mutations to estimate rifampicin resistance in Austrian N. gonorrhoeae isolates. We found 30% of resistant isolates clustering in three main phylogenomic branches. Rifampicin resistance was associated with resistance to other antibiotics. Therefore, rifampicin cannot be recommended as an alternative gonorrhea treatment in Austria, even in combination therapy. IMPORTANCE Gonorrhea, caused by Neisseria gonorrhoeae, is one of the most common bacterial sexually transmitted infections. It is treated with antibiotics, but an increasing number of N. gonorrhoeae strains are resistant to currently used treatments. In this study, we explored the potential of rifampicin, another antibiotic, as a treatment option for gonorrhea. However, around 30% of Austrian N. gonorrhoeae strains investigated were already resistant to rifampicin, which would limit its benefit as a gonorrhea treatment.


Subject(s)
Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Gonorrhea , Neisseria gonorrhoeae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Austria , Drug Resistance, Bacterial/genetics , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Humans , Microbial Sensitivity Tests , Mutation , Neisseria gonorrhoeae/genetics , Rifampin/pharmacology , Rifampin/therapeutic use
13.
Wien Klin Wochenschr ; 134(13-14): 511-515, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35723752

ABSTRACT

BACKGROUND: Dermatitis linearis is a toxic skin lesion caused by contact with certain beetles of the genus Paederus (Coleoptera: Staphylinidae). Dermatitis linearis outbreaks have been described mainly in tropical and subtropical regions, but so far not in Central Europe, and are considered an emerging public health concern potentially associated with climate change. MATERIAL AND METHODS: Following diagnosis of dermatitis linearis in a cluster of six adults and one child with reported exposure to beetles with morphological characteristics of Paederus species at a recreational public open-air bath at Lake Neusiedl (Illmitz, Burgenland, Austria), we performed on-site inspection and installed light and pitfall traps. Collected beetle specimens of the genus Paederus were classified using morphological characteristics and DNA barcoding. RESULTS: A total of 32 Paederus beetles were collected using an aspirator (n = 2) and light traps (n = 30). No individuals of the genus Paederus were captured with the pitfall traps. Morphological analyses identified them as members of the Paederus balcanicus species, which was confirmed by genetic specification of four arbitrarily chosen individuals. Dermatitis linearis lesions were treated with topical steroids and healed but partly leaving scars and hyperpigmentation, over the course of a few weeks in all affected persons. CONCLUSION: We report for the first time (a) an outbreak of dermatitis linearis associated with exposure to autochthonous Paederus species in Austria, and (b) that contact to the species Paederus balcanicus may cause dermatitis linearis in humans. Adequate measures should be taken to prevent dermatitis linearis outbreaks in areas with resident Paederus occurrence.


Subject(s)
Coleoptera , Dermatitis , Adult , Animals , Austria/epidemiology , Child , Dermatitis/epidemiology , Disease Outbreaks , Europe , Humans
14.
Microbiol Resour Announc ; 11(7): e0034322, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35638830

ABSTRACT

Aeromonas dhakensis is the most virulent Aeromonas species pathogenic to both animals and humans. The degree of its risk to health seems masked by misidentifications. We present the genome sequence of A. dhakensis Igbk (sequence type 1171), associated with snails, harboring the OXA-726 gene in the chromosome.

15.
Front Microbiol ; 13: 793541, 2022.
Article in English | MEDLINE | ID: mdl-35283848

ABSTRACT

There is a link between antibiotic resistance in humans, livestock and the environment. This study was carried out to characterize antibiotic resistant bovine and environmental Enterobacteriaceae isolates from Edo state, Nigeria. A total of 109 consecutive isolates of Enterobacteriaceae were isolated from March-May 2015 from 150 fecal samples of healthy bovine animals from three farms at slaughter in Edo state Nigeria. Similarly, 43 Enterobacteriaceae isolates were also obtained from a total of 100 environmental samples from different sources. Isolates were recovered and identified from samples using standard microbiological techniques. Recovered isolates were pre-identified by the Microbact Gram-Negative identification system and confirmed with Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and ribosomal multilocus sequence typing (rMLST). Antibiotic susceptibility testing was carried out by Kirby-Bauer method for 14 antibiotics. Whole genome sequencing (WGS) was carried out for isolate characterization and identification of resistance determinants. Out of 109 animal and 43 environmental Enterobacteriaceae isolates, 18 (17%) and 8 (19%) isolates based on selection criteria showed antibiotic resistance and were further investigated by whole genome sequencing (WGS). Resistance genes were detected in all (100%) of the resistant bovine and environmental Enterobacteriaceae isolates. The resistance determinants included ß-lactamase genes, aminoglycoside modifying enzymes, qnr genes, sulfonamide, tetracycline and trimethoprim resistance genes, respectively. Out of the 18 and 8 resistant animal and environmental isolates 3 (17%) and 2 (25%) were multidrug resistant (MDR) and had resistance determinants which included efflux genes, regulatory systems modulating antibiotic efflux and antibiotic target alteration genes. Our study shows the dissemination of antibiotic resistance especially MDR strains among Nigerian bovine and environmental Enterobacteriaceae isolates. The presence of these resistant strains in animals and the environment constitute a serious health concern indicated by the difficult treatment options of the infections caused by these organisms. To the best of our knowledge we report the first detailed genomic characterization of antibiotic resistance in bovine and environmental Enterobacteriaceae isolates for Nigeria.

16.
Lett Appl Microbiol ; 74(6): 1008-1015, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35263446

ABSTRACT

This is the first report of acute deaths in five European brown hares (Lepus europaeus) attributed to mucoid and necrotizing typhlocolitis caused by genetically different Cronobacter (C.) turicensis strains in northeastern Austria. As this opportunistic pathogen is mainly known for causing disease in immunocompromised humans and neonates, this previously unrecognized potential for a spill over from a wildlife reservoir to humans warrants further attention.


Subject(s)
Cronobacter , Hares , Animals , Animals, Wild , Disease Outbreaks/veterinary , Humans , Infant, Newborn
17.
Insects ; 13(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35323574

ABSTRACT

In Austria, only fragmented information on the occurrence of alien and potentially invasive mosquito species exists. The aim of this study is a nationwide overview on the situation of those mosquitoes in Austria. Using a nationwide uniform protocol for the first time, mosquito eggs were sampled with ovitraps at 45 locations in Austria at weekly intervals from May to October 2020. The sampled eggs were counted and the species were identified by genetic analysis. The Asian tiger mosquito Aedes albopictus was found at two sites, once in Tyrol, where this species has been reported before, and for the first time in the province of Lower Austria, at a motorway rest stop. The Asian bush mosquito Aedes japonicus was widespread in Austria. It was found in all provinces and was the most abundant species in the ovitraps by far. Aedes japonicus was more abundant in the South than in the North and more eggs were found in habitats with artificial surfaces than in (semi-) natural areas. Further, the number of Ae. japonicus eggs increased with higher ambient temperature and decreased with higher wind speed. The results of this study will contribute to a better estimation of the risk of mosquito-borne disease in Austria and will be a useful baseline for a future documentation of changes in the distribution of those species.

18.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163582

ABSTRACT

108 isolates of Staphylococcus aureus, belonging to six large ribogroups according to the automated Ribo-Printer® system, were studied with two highly used molecular methods for epidemiological studies, namely multi-locus sequence typing (MLST) and spa typing, followed by BURP and eBURST v3 analysis for clustering spa types and sequence (ST) types. The aim was to evaluate whether automated ribotyping could be considered a useful screening tool for identifying S. aureus genetic lineages with respect to spa typing and MLST. Clarifying the relationship of riboprinting with these typing methods and establishing whether ribogroups fit single clonal complexes were two main objectives. Further information on the genetic profile of the isolates was obtained from agr typing and the search for the mecA, tst genes, and the IS256 insertion sequence. Automated ribotyping has been shown to predict spa clonal complexes and MLST clonal complexes. The high cost and lower discriminatory power of automated ribotyping compared to spa and MSLT typing could be an obstacle to fine genotyping analyzes, especially when high discriminatory power is required. On the other hand, numerous advantages such as automation, ease and speed of execution, stability, typeability and reproducibility make ribotyping a reliable method to be juxtaposed to gold standard methods.


Subject(s)
Multilocus Sequence Typing , Ribotyping , Staphylococcal Infections/genetics , Staphylococcus aureus , Humans , Staphylococcus aureus/classification , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification
19.
Parasitol Res ; 121(2): 765-768, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35032218

ABSTRACT

Aedes pulcritarsis is a tree-hole breeding species with its main distribution in the Mediterranean area. Within the scope of two independent monitoring programmes, this mosquito species was detected for the first time in Austria, in the province of Lower Austria (2018, districts Mistelbach and Gaenserndorf; 2020, district Bruck an der Leitha). As the climatic and habitat situation in Central Europe seems to be generally suitable for this species, the most likely explanation for the species not being recorded previously is that it might have been overlooked in the past due to its specialized breeding habitat. However, further research on the distribution of Ae. pulcritarsis in Austria would be needed to support this hypothesis. The results from this study will contribute to the investigation of the northern distribution limit of Ae. pulcritarsis in Europe and possible changes thereof.


Subject(s)
Aedes , Culicidae , Ochlerotatus , Animals , Austria , Ecosystem , Europe
20.
Transbound Emerg Dis ; 69(4): 2096-2109, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34169666

ABSTRACT

Increased globalization and international transportation have resulted in the inadvertent introduction of exotic mosquitoes and new mosquito-borne diseases. International airports are among the possible points of entry for mosquitoes and their pathogens. We established a mosquito and mosquito-borne diseases monitoring programme at the largest international airport in Austria and report the results for the first two years, 2018 and 2019. This included weekly monitoring and sampling of adult mosquitoes, and screening them for the presence of viral nucleic acids by standard molecular diagnostic techniques. Additionally, we surveyed the avian community at the airport, as birds are potentially amplifying hosts. In 2018, West Nile virus (WNV) was detected in 14 pools and Usutu virus (USUV) was detected in another 14 pools of mosquitoes (minimum infection rate [MIR] of 6.8 for each virus). Of these 28 pools, 26 consisted of female Culex pipiens/torrentium, and two contained male Culex sp. mosquitoes. Cx. pipiens/torrentium mosquitoes were the most frequently captured mosquito species at the airport. The detected WNV strains belonged to five sub-clusters within the sub-lineage 2d-1, and all detected USUV strains were grouped to at least seven sub-clusters among the cluster Europe 2; all strains were previously shown to be endemic in Austria. In 2019, all mosquito pools were negative for any viral nucleic acids tested. Our study suggests that airports may serve as foci of arbovirus activity, particularly during epidemic years, and should be considered when designing mosquito control and arbovirus monitoring programmes.


Subject(s)
Culex , Nucleic Acids , West Nile Fever , West Nile virus , Airports , Animals , Austria/epidemiology , Birds , Female , Flavivirus , Male , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL