Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Chem Biodivers ; 21(7): e202400637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740555

ABSTRACT

One of the triazole tautomers, 1,2,4-triazole derivatives, has a wide range of biological activities that suggest its potential therapeutic utility in medicinal chemistry. These actions include anti-inflammatory, anti-cancer, anti-bacterial, anti-tuberculosis, and anti-diabetic effects. Using computational simulations and models, we investigate the structure-activity relationships of 1,2,4-triazoles, showing how various modifications to the triazole core yield a variety of clinical therapeutic benefits. The review highlights the anti-inflammatory effect of 1,2,4-triazoles in relation to their ability to disrupt significant inflammatory mediators and pathways. We present in-silico data that illuminate the triazoles' capacity to inhibit cell division, encourage apoptosis, and stop metastasis in a range of cancer models. This review looks at the bactericidal and bacteriostatic properties of 1,2,4-triazole derivatives, with a focus on their potential efficacy against multi-drug resistant bacterial infections and their usage in tuberculosis therapy. In order to better understand these substances' potential anti-diabetic benefits, this review also looks at how they affect glucose metabolism regulation and insulin responsiveness. Coordinated efforts are required to translate the efficacy of 1,2,4-triazole compounds in preclinical models into practical therapeutic benefits. Based on the information provided, it can be concluded that 1,2,4-triazole derivatives are a promising class of diverse therapeutic agents with potential utility in a range of disorders. Their development and improvement might herald a new era of medical care that will be immensely advantageous to both patients and the medical community as a whole. This comprehensive research, which is further reinforced by in-silico investigations, highlights the great medicinal potential of 1,2,4-triazoles. Additionally, this study encourages more research into these substances and their enhancement for use in pharmaceutical development.


Subject(s)
Antineoplastic Agents , Drug Design , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Chemistry, Pharmaceutical , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL