Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters








Publication year range
1.
J Hazard Mater ; 480: 135781, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260000

ABSTRACT

Recent studies have indicated that soil contamination with microplastics (MPs) can negatively affect agricultural productivity, although these effects vary greatly depending on the context. Furthermore, the mechanisms behind these effects remain largely unknown. In this study, we examined the impact of two concentrations of polypropylene (PP) fibers in the soil (0.4 % and 0.8 % w/w) on soybean growth, nitrogen uptake, biological nitrogen fixation (BNF), and water use efficiency by growing plants in two soil types, with and without arbuscular mycorrhizal fungi (AMF). PP contamination consistently reduced vegetative growth (-12 %, on average compared to the control), with the severity of this effect varying significantly by soil type (more pronounced in Alfisol than in Vertisol). The extent of BNF progressively reduced with the increase in PP contamination level in both soils (on average, -17.1 % in PP0.4 and -27.5 % in PP0.8 compared to the control), which poses clear agro-environmental concerns. Water use efficiency was also reduced due to PP contamination but only in the Alfisol (-9 %, on average). Mycorrhizal symbiosis did not seem to help plants manage the stress caused by PP contamination, although it did lessen the negative impact on BNF. These findings are the first to demonstrate the effect of PP on BNF in soybean plants, underscoring the need to develop strategies to reduce PP pollution in the soil and to mitigate the impact of PP on the functionality and sustainability of agroecosystems.

2.
Curr Cardiol Rep ; 26(9): 943-952, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38990492

ABSTRACT

PURPOSE OF REVIEW: The cardiac conduction system, composed of pacemaker cells and conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize heartbeats. The conduction system plays a crucial role in the development of cardiac arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac progenitors as the contractile cardiomyocytes and and the key question is how this choice is made during development. RECENT FINDINGS: This review focuses on recent advances in developmental biology using the mouse as animal model to better understand the cellular origin and molecular regulations that control morphogenesis of the cardiac conduction system, including the latest findings in single-cell transcriptomics. The conducting cell fate is acquired during development starting with pacemaking activity and last with the formation of a complex fast-conducting network. Cardiac conduction system morphogenesis is controlled by complex transcriptional and gene regulatory networks that differ in the components of the cardiac conduction system.


Subject(s)
Heart Conduction System , Myocytes, Cardiac , Heart Conduction System/physiopathology , Animals , Myocytes, Cardiac/physiology , Humans , Arrhythmias, Cardiac/physiopathology , Mice , Gene Expression Regulation, Developmental , Cell Differentiation , Morphogenesis , Gene Regulatory Networks
3.
J Vasc Access ; : 11297298241254561, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836580

ABSTRACT

Fibroblastic sleeve is a common pathophysiological phenomenon characterized by the formation of a mixed fibrous-collagen tissue encasing the outside of venous access devices. Although it nearly always presents asymptomatically, this catheter-related complication represents one of the leading culprits of venous catheters malfunction. Several techniques have been described for the management of dysfunctional catheters secondary to fibroblastic sleeve, including medical therapy, catheter exchange, balloon angioplasty, and percutaneous stripping. However, there is no common consensus for the treatment management in patients who present contraindications to surgical port removal. This report illustrates the case of a port catheter malfunction due to a fibroblastic sleeve in an oncological patient with a high risk of bleeding. This was effectively treated with a minimally invasive stripping technique using an off-label device for mechanical thrombectomy, namely the ClotTriever system (Inari Medical, Irvine, CA).

4.
CVIR Endovasc ; 7(1): 6, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180623

ABSTRACT

The aim of the article is to introduce a new term in post-procedural events related to the procedure itself. All the Societies and Councils report these events as complications and they are divided in mild, moderate and severe or immediate and delayed.On the other hand the term error is known as the application of a wrong plan, or strategy to achieve a goal.For the first time, we are trying to introduce the term "consequence"; assuming that the procedure is the only available and the best fit to clinical indication, a consequence should be seen as an expected and unavoidable occurrence of an "adverse event" despite correct technical execution.

5.
Environ Pollut ; 334: 122146, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37419209

ABSTRACT

Soil contamination with microplastics may adversely affect soil properties and functions and consequently crop productivity. In this study, we wanted to verify whether the adverse effects of microplastics in the soil on maize plants (Zea mays L.) are due to a reduction in nitrogen (N) availability and a reduced capacity to establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi. To do this, we performed a pot experiment in which a clayey soil was exposed to two environmentally relevant concentrations of polypropylene (PP; one of the most used plastic materials) microfibers (0.4% and 0.8% w/w) with or without the addition of N fertilizer and with or without inoculation with AM fungi. The experiment began after the soil had been incubated at 23 °C for 5 months. Soil contamination with PP considerably reduced maize root and shoot biomass, leaf area, N uptake, and N content in tissue. The adverse effects increased with the concentration of PP in the soil. Adding N to the soil did not alleviate the detrimental effects of PP on plant growth, which suggests that other factors besides N availability played a major role. Similarly, although the presence of PP did not inhibit root colonization by AM fungi (no differences were observed for this trait between the uncontaminated and PP-contaminated soils), the addition of the fungal inoculum to the soil failed to mitigate the negative impact of PP on maize growth. Quite the opposite: mycorrhization further reduced maize root biomass accumulation. Undoubtedly, much research remains to be done to shed light on the mechanisms involved in determining plant behavior in microplastic-contaminated soils, which are most likely complex. This research is a priority given the magnitude of this contamination and its potential implications for human and environmental health.


Subject(s)
Mycorrhizae , Soil Pollutants , Humans , Mycorrhizae/chemistry , Zea mays , Polypropylenes , Plastics/pharmacology , Plant Roots , Soil , Nitrogen/pharmacology , Microplastics , Fertilization , Soil Pollutants/analysis , Fungi
6.
Dev Biol ; 498: 77-86, 2023 06.
Article in English | MEDLINE | ID: mdl-37037405

ABSTRACT

Outflow tract (OFT) develops from cardiac progenitor cells in the second heart field (SHF) domain. APJ, a G-Protein Coupled Receptor, is expressed by cardiac progenitors in the SHF. By lineage tracing APJ+SHF cells, we show that these cardiac progenitors contribute to the cells of OFT, which eventually give rise to aorta and pulmonary trunk/artery upon its morphogenesis. Furthermore, we show that early APJ â€‹+ â€‹cells give rise to both aorta and pulmonary cells but late APJ â€‹+ â€‹cells predominantly give rise to pulmonary cells. APJ is expressed by the outflow tract progenitors in the SHF but its role is unclear. We performed knockout studies to determine the role of APJ in SHF cell proliferation and survival. Our data suggested that APJ knockout in the SHF reduced the proliferation of SHF progenitors, while there was no significant impact on survival. In addition, we show that ectopic overexpression of WNT in these cells disrupted aorta and pulmonary morphogenesis from OFT. Overall, our study has identified APJ â€‹+ â€‹progenitor population within the SHF that give rise to aorta and pulmonary trunk/artery cells. Furthermore, we show that APJ signaling stimulates proliferation of these cells in the SHF.


Subject(s)
Heart , Signal Transduction , Stem Cells , Pulmonary Artery , Aorta , Myocardium , Gene Expression Regulation, Developmental
7.
Sci Rep ; 13(1): 116, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596823

ABSTRACT

The salinity of soil is a relevant environmental problem around the world, with climate change raising its relevance, particularly in arid and semiarid areas. Arbuscular Mycorrhizal Fungi (AMF) positively affect plant growth and health by mitigating biotic and abiotic stresses, including salt stress. The mechanisms through which these benefits manifest are, however, still unclear. This work aimed to identify key genes involved in the response to salt stress induced by AMF using RNA-Seq analysis on durum wheat (Triticum turgidum L. subsp. durum Desf. Husn.). Five hundred sixty-three differentially expressed genes (DEGs), many of which involved in pathways related to plant stress responses, were identified. The expression of genes involved in trehalose metabolism, RNA processing, vesicle trafficking, cell wall organization, and signal transduction was significantly enhanced by the AMF symbiosis. A downregulation of genes involved in both enzymatic and non-enzymatic oxidative stress responses as well as amino acids, lipids, and carbohydrates metabolisms was also detected, suggesting a lower oxidative stress condition in the AMF inoculated plants. Interestingly, many transcription factor families, including WRKY, NAC, and MYB, already known for their key role in plant abiotic stress response, were found differentially expressed between treatments. This study provides valuable insights on AMF-induced gene expression modulation and the beneficial effects of plant-AMF interaction in durum wheat under salt stress.


Subject(s)
Mycorrhizae , Transcriptome , Triticum/metabolism , Symbiosis/physiology , Plant Roots/metabolism , Salt Tolerance/genetics , Mycorrhizae/physiology
8.
Dev Cell ; 57(22): 2517-2532.e6, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36347256

ABSTRACT

Endocardial cells lining the heart lumen are coronary vessel progenitors during embryogenesis. Re-igniting this developmental process in adults could regenerate blood vessels lost during cardiac injury, but this requires additional knowledge of molecular mechanisms. Here, we use mouse genetics and scRNA-seq to identify regulators of endocardial angiogenesis and precisely assess the role of CXCL12/CXCR4 signaling. Time-specific lineage tracing demonstrated that endocardial cells differentiated into coronary endothelial cells primarily at mid-gestation. A new mouse line reporting CXCR4 activity-along with cell-specific gene deletions-demonstrated it was specifically required for artery morphogenesis rather than angiogenesis. Integrating scRNA-seq data of endocardial-derived coronary vessels from mid- and late-gestation identified a Bmp2-expressing transitioning population specific to mid-gestation. Bmp2 stimulated endocardial angiogenesis in vitro and in injured neonatal mouse hearts. Our data demonstrate how understanding the molecular mechanisms underlying endocardial angiogenesis can identify new potential therapeutic targets promoting revascularization of the injured heart.


Subject(s)
Coronary Vessels , Endocardium , Animals , Female , Mice , Pregnancy , Bone Morphogenetic Protein 2 , Cell Differentiation , Endothelial Cells , Heart , Organogenesis
9.
Science ; 376(6594): eabl4896, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35549404

ABSTRACT

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression. Using multiple tissues from a single donor enabled identification of the clonal distribution of T cells between tissues, identification of the tissue-specific mutation rate in B cells, and analysis of the cell cycle state and proliferative potential of shared cell types across tissues. Cell type-specific RNA splicing was discovered and analyzed across tissues within an individual.


Subject(s)
Atlases as Topic , Cells , Organ Specificity , RNA Splicing , Single-Cell Analysis , Transcriptome , B-Lymphocytes/metabolism , Cells/metabolism , Humans , Organ Specificity/genetics , T-Lymphocytes/metabolism
10.
J Sci Food Agric ; 102(14): 6246-6254, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35491936

ABSTRACT

BACKGROUND: Conservative tillage techniques have several agro-ecological benefits for organic farming. The application of these techniques, however, can create quite a few challenges due to the increased weed competition. Here, we report the results of an organic field experiment in which the responses of wheat and weeds to no tillage (NT) were evaluated compared with conventional tillage (CT). We also tested the hypothesis that, under NT, moving up the sowing date, compared with using the ordinary sowing date for the study area, can result in increased competitiveness of the crop against weeds. Two wheat genotypes, a modern variety and an ancient landrace, were tested. RESULTS: Substantial reductions in grain yield and protein content were observed in wheat under NT than under CT when the ordinary sowing date was used. This was mainly due to the considerable increase in weed biomass under NT. The tillage system also altered the composition of weed flora, with some species favored under NT and others under CT. In general, early sowing mitigated the detrimental effect of NT on yield. The two genotypes responded differently to the treatments. The early sowing in the modern variety reduced but did not eliminate the advantages of CT over NT, whereas no appreciable differences in grain yield were observed between CT and NT in the landrace. CONCLUSION: Our results show clearly that, under organic management, using NT alone as a substitute for CT is not agronomically feasible. Moving up the sowing date and using a competitive genotype can help mitigate the negative effects of NT, but surely a more effective application of NT could be achieved by acting simultaneously on other factors of the cropping management system (e.g. crop rotation, fertilization strategy, type of seeder). © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Soil , Triticum , Agriculture/methods , Biomass , Edible Grain , Triticum/genetics
11.
Nat Cardiovasc Res ; 1(8): 775-790, 2022 Aug.
Article in English | MEDLINE | ID: mdl-37305211

ABSTRACT

Collateral arteries bridge opposing artery branches, forming a natural bypass that can deliver blood flow downstream of an occlusion. Inducing coronary collateral arteries could treat cardiac ischemia, but more knowledge on their developmental mechanisms and functional capabilities is required. Here we used whole-organ imaging and three-dimensional computational fluid dynamics modeling to define spatial architecture and predict blood flow through collaterals in neonate and adult mouse hearts. Neonate collaterals were more numerous, larger in diameter and more effective at restoring blood flow. Decreased blood flow restoration in adults arose because during postnatal growth coronary arteries expanded by adding branches rather than increasing diameters, altering pressure distributions. In humans, adult hearts with total coronary occlusions averaged 2 large collaterals, with predicted moderate function, while normal fetal hearts showed over 40 collaterals, likely too small to be functionally relevant. Thus, we quantify the functional impact of collateral arteries during heart regeneration and repair-a critical step toward realizing their therapeutic potential.

12.
Elife ; 102021 12 15.
Article in English | MEDLINE | ID: mdl-34910626

ABSTRACT

Most cell fate trajectories during development follow a diverging, tree-like branching pattern, but the opposite can occur when distinct progenitors contribute to the same cell type. During this convergent differentiation, it is unknown if cells 'remember' their origins transcriptionally or whether this influences cell behavior. Most coronary blood vessels of the heart develop from two different progenitor sources-the endocardium (Endo) and sinus venosus (SV)-but whether transcriptional or functional differences related to origin are retained is unknown. We addressed this by combining lineage tracing with single-cell RNA sequencing (scRNAseq) in embryonic and adult mouse hearts. Shortly after coronary development begins, capillary endothelial cells (ECs) transcriptionally segregated into two states that retained progenitor-specific gene expression. Later in development, when the coronary vasculature is well established but still remodeling, capillary ECs again segregated into two populations, but transcriptional differences were primarily related to tissue localization rather than lineage. Specifically, ECs in the heart septum expressed genes indicative of increased local hypoxia and decreased blood flow. Adult capillary ECs were more homogeneous with respect to both lineage and location. In agreement, SV- and Endo-derived ECs in adult hearts displayed similar responses to injury. Finally, scRNAseq of developing human coronary vessels indicated that the human heart followed similar principles. Thus, over the course of development, transcriptional heterogeneity in coronary ECs is first influenced by lineage, then by location, until heterogeneity declines in the homeostatic adult heart. These results highlight the plasticity of ECs during development, and the validity of the mouse as a model for human coronary development.


Subject(s)
Coronary Vessels/embryology , Embryo, Mammalian/metabolism , Embryonic Development , Endothelial Cells/metabolism , Animals , Humans , Mice , RNA-Seq , Single-Cell Analysis
14.
Mycorrhiza ; 31(4): 441-454, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33893547

ABSTRACT

Many aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants.


Subject(s)
Mycorrhizae , Plant Roots , Soil , Symbiosis , Triticum
15.
Front Plant Sci ; 11: 760, 2020.
Article in English | MEDLINE | ID: mdl-32636854

ABSTRACT

Plant performance is strongly dependent on nitrogen (N), and thus increasing N nutrition is of great relevance for the productivity of agroecosystems. The effects of arbuscular mycorrhizal (AM) fungi on plant N acquisition are debated because contradictory results have been reported. Using 15N-labeled fertilizers as a tracer, we evaluated the effects of AM fungi on N uptake and recovery from mineral or organic sources in durum wheat. Under sufficient N availability, AM fungi had no effects on plant biomass but increased N concentrations in plant tissue, plant N uptake, and total N recovered from the fertilizer. In N-deficient soil, AM fungi led to decreased aboveground biomass, which suggests that plants and AM fungi may have competed for N. When the organic source had a low C:N ratio, AM fungi favored both plant N uptake and N recovery. In contrast, when the organic source had a high C:N ratio, a clear reduction in N recovery from the fertilizer was observed. Overall, the results indicate an active role of arbuscular mycorrhizae in favoring plant N-related traits when N is not a limiting factor and show that these fungi help in N recovery from the fertilizer. These results hold great potential for increasing the sustainability of durum wheat production.

16.
Mol Biol Rep ; 46(5): 5163-5174, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31327121

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are soil microrganisms that establish symbiosis with plants positively influencing their resistance to abiotic stresses. The aim of this work was to identify wheat miRNAs differentially regulated by water deficit conditions in presence or absence of AMF treatment. Small RNA libraries were constructed for both leaf and root tissues considering four conditions: control (irrigated) or water deficit in presence/absence of mycorrhizal (AMF) treatment. A total of 12 miRNAs were significantly regulated by water deficit in leaves: five in absence and seven in presence of AMF treatment. In roots, three miRNAs were water deficit-modulated in absence of mycorrhizal treatment while six were regulated in presence of it. The most represented miRNA family was miR167 that was regulated by water deficit in both leaf and root tissues. Interestingly, miR827-5p was differentially regulated in leaves in the absence of mycorrhizal treatment while it was water deficit-modulated in roots irrespective of AMF treatment. In roots, water deficit repressed miR827-5p, miR394, miR6187, miR167e-3p, and miR9666b-3p affecting transcription, RNA synthesis, protein synthesis, and protein modifications. In leaves, mycorrhizae modulated miR5384-3p and miR156e-3p affecting trafficking and cell redox homeostasis. DNA replication and transcription regulation should be targeted by the repression of miR1432-5p and miR166h-3p. This work provided interesting insights into the post-transcriptional mechanisms of wheat responses to water deficit in relation to mycorrhizal symbiosis.


Subject(s)
Gene Regulatory Networks , MicroRNAs/genetics , Mycorrhizae/physiology , Triticum/growth & development , Droughts , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , RNA, Plant/genetics , Stress, Physiological , Triticum/genetics , Triticum/microbiology
17.
Mol Cell Proteomics ; 18(9): 1782-1795, 2019 09.
Article in English | MEDLINE | ID: mdl-31249105

ABSTRACT

The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a transforming growth factor-ß2 (TGFß2)-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the up-regulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfß2, Loxl2, Ptx3, Timp3, Fbln2, and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.


Subject(s)
Endocardium/embryology , Endocardium/metabolism , Heart Valves/embryology , Receptors, Notch/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Benzazepines/pharmacology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cells, Cultured , Endocardium/cytology , Endocardium/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic , Heart Valves/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Mice, Mutant Strains , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptors, Notch/genetics , Reproducibility of Results
18.
PLoS One ; 14(3): e0213672, 2019.
Article in English | MEDLINE | ID: mdl-30856237

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) can play a key role in natural and agricultural ecosystems affecting plant nutrition, soil biological activity and modifying the availability of nutrients by plants. This research aimed at expanding the knowledge of the role played by AMF in the uptake of macro- and micronutrients and N transfer (using a 15N stem-labelling method) in a faba bean/wheat intercropping system. It also investigates the role of AMF in biological N fixation (using the natural isotopic abundance method) in faba bean grown in pure stand and in mixture. Finally, it examines the role of AMF in driving competition and facilitation between faba bean and wheat. Durum wheat and faba bean were grown in pots (five pots per treatment) as sole crops or in mixture in the presence or absence of AMF. Root colonisation by AMF was greater in faba bean than in wheat and increased when species were mixed compared to pure stand (particularly for faba bean). Mycorrhizal symbiosis positively influenced root biomass, specific root length, and root density and increased the uptake of P, Fe, and Zn in wheat (both in pure stand and in mixture) but not in faba bean. Furthermore, AMF symbiosis increased the percentage of N derived from the atmosphere in the total N biomass of faba bean grown in mixture (+20%) but not in pure stand. Nitrogen transfer from faba bean to wheat was low (2.5-3.0 mg pot-1); inoculation with AMF increased N transfer by 20%. Overall, in terms of above- and belowground growth and uptake of nutrients, mycorrhization favoured the stronger competitor in the mixture (wheat) without negatively affecting the companion species (faba bean). Results of this study confirm the role of AMF in driving biological interactions among neighbouring plants.


Subject(s)
Mycorrhizae/growth & development , Nitrogen Fixation , Triticum/growth & development , Vicia faba/growth & development , Agriculture/methods , Biomass , Crops, Agricultural/growth & development , Ecosystem , Nitrogen , Nutrients , Phosphorus , Plant Roots/growth & development , Soil , Symbiosis
19.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30686582

ABSTRACT

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Subject(s)
Collateral Circulation/physiology , Heart/growth & development , Regeneration/physiology , Animals , Animals, Newborn/growth & development , Chemokine CXCL12/metabolism , Coronary Vessels/growth & development , Endothelial Cells/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/physiology , Receptors, CXCR4/metabolism , Signal Transduction
20.
Nature ; 559(7714): 356-362, 2018 07.
Article in English | MEDLINE | ID: mdl-29973725

ABSTRACT

Arteries and veins are specified by antagonistic transcriptional programs. However, during development and regeneration, new arteries can arise from pre-existing veins through a poorly understood process of cell fate conversion. Here, using single-cell RNA sequencing and mouse genetics, we show that vein cells of the developing heart undergo an early cell fate switch to create a pre-artery population that subsequently builds coronary arteries. Vein cells underwent a gradual and simultaneous switch from venous to arterial fate before a subset of cells crossed a transcriptional threshold into the pre-artery state. Before the onset of coronary blood flow, pre-artery cells appeared in the immature vessel plexus, expressed mature artery markers, and decreased cell cycling. The vein-specifying transcription factor COUP-TF2 (also known as NR2F2) prevented plexus cells from overcoming the pre-artery threshold by inducing cell cycle genes. Thus, vein-derived coronary arteries are built by pre-artery cells that can differentiate independently of blood flow upon the release of inhibition mediated by COUP-TF2 and cell cycle factors.


Subject(s)
Arteries/cytology , Coronary Vessels/cytology , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/metabolism , Veins/cytology , Animals , Arteries/metabolism , COUP Transcription Factor II/metabolism , Cell Cycle/genetics , Cell Differentiation , Cell Lineage , Coronary Vessels/metabolism , Female , Male , Mice , Sequence Analysis, RNA , Veins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL