Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4912, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851738

ABSTRACT

Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual trimer arrangement with a positively charged external surface and negatively charged solvent exposed internal cavity. Through molecular dynamics simulations, we show how the glycosaminoglycan chondroitin-4-sulphate associates with the Lcl-CTD surface via distinct binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate-binding mechanism.


Subject(s)
Bacterial Proteins , Collagen , Glycosaminoglycans , Legionella pneumophila , Molecular Dynamics Simulation , Protein Binding , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Legionella pneumophila/metabolism , Collagen/metabolism , Collagen/chemistry , Crystallography, X-Ray , Chondroitin Sulfates/metabolism , Chondroitin Sulfates/chemistry , Bacterial Adhesion , Protein Domains , Legionnaires' Disease/microbiology , Legionnaires' Disease/metabolism , Humans , Amino Acid Sequence
2.
Acta Physiol (Oxf) ; 239(2): e14035, 2023 10.
Article in English | MEDLINE | ID: mdl-37602753

ABSTRACT

AIM: Conditions related to mutations in the gene encoding the skeletal muscle ryanodine receptor 1 (RYR1) are genetic muscle disorders and include congenital myopathies with permanent weakness, as well as episodic phenotypes such as rhabdomyolysis/myalgia. Although RYR1 dysfunction is the primary mechanism in RYR1-related disorders, other downstream pathogenic events are less well understood and may include a secondary remodeling of major contractile proteins. Hence, in the present study, we aimed to investigate whether congenital myopathy-related RYR1 mutations alter the regulation of the most abundant contractile protein, myosin. METHODS: We used skeletal muscle tissues from five patients with RYR1-related congenital myopathy and compared those with five controls and five patients with RYR1-related rhabdomyolysis/myalgia. We then defined post-translational modifications on myosin heavy chains (MyHCs) using LC/MS. In parallel, we determined myosin relaxed states using Mant-ATP chase experiments and performed molecular dynamics (MD) simulations. RESULTS: LC/MS revealed two additional phosphorylations (Thr1309-P and Ser1362-P) and one acetylation (Lys1410-Ac) on the ß/slow MyHC of patients with congenital myopathy. This method also identified six acetylations that were lacking on MyHC type IIa of these patients (Lys35-Ac, Lys663-Ac, Lys763-Ac, Lys1171-Ac, Lys1360-Ac, and Lys1733-Ac). MD simulations suggest that modifying myosin Ser1362 impacts the protein structure and dynamics. Finally, Mant-ATP chase experiments showed a faster ATP turnover time of myosin heads in the disordered-relaxed conformation. CONCLUSIONS: Altogether, our results suggest that RYR1 mutations have secondary negative consequences on myosin structure and function, likely contributing to the congenital myopathic phenotype.


Subject(s)
Muscular Diseases , Myosin Heavy Chains , Rhabdomyolysis , Ryanodine Receptor Calcium Release Channel , Humans , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/pathology , Mutation , Myalgia/metabolism , Myalgia/pathology , Myosin Heavy Chains/genetics , Protein Processing, Post-Translational , Rhabdomyolysis/metabolism , Ryanodine Receptor Calcium Release Channel/genetics
3.
Biophys J ; 122(1): 54-62, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36451546

ABSTRACT

The development of small molecule myosin modulators has seen an increased effort in recent years due to their possible use in the treatment of cardiac and skeletal myopathies. Omecamtiv mecarbil (OM) is the first-in-class cardiac myotrope and the first to enter clinical trials. Its selectivity toward slow/beta-cardiac myosin lies at the heart of its function; however, little is known about the underlying reasons for selectivity to this isoform as opposed to other closely related ones such as fast-type skeletal myosins. In this work, we compared the structure and dynamics of the OM binding site in cardiac and in fasttype IIa skeletal myosin to identify possible reasons for OM selectivity. We found that the different shape, size, and composition of the binding pocket in skeletal myosin directly affects the binding mode and related affinity of OM, which is potentially a result of weaker interactions and less optimal molecular recognition. Moreover, we identified a side pocket adjacent to the OM binding site that shows increased accessibility in skeletal myosin compared with the cardiac isoform. These findings could pave the way to the development of skeletal-selective compounds that can target this region of the protein and potentially be used to treat congenital myopathies where muscle weakness is related to myosin loss of function.


Subject(s)
Heart , Myosins , Myosins/metabolism , Myocardium/metabolism , Cardiac Myosins/chemistry , Cardiac Myosins/metabolism , Protein Domains , Urea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL