Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Chemosphere ; 341: 140030, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37669719

ABSTRACT

Surface water pollution has become relevant because growing population and intense industrial activities. Thus, to protect the environment from contamination, recently the electroanalytical sensors that require small sample volume and easy preparation have shown a prominent performance for pharmaceuticals monitoring. For this purpose, a miniaturized electrochemical platform was developed based on recycling obsolete computer integrated circuits (microchips), fitting with the ideals of green chemistry and circular economy. The gold microelectrodes array (Au-µEA) was easily exposed by polishing the device surface and then characterized by optical microscopy, scanning electron microscopy and cyclic voltammetry. To enhance the analytical performance for isoniazid detection, the Au-µEA was modified with electrochemically reduced graphene oxide (ERGO). The developed sensor presented a linear range between 5 and 100 µmol L-1 and a limit of detection of 1.38 µmol L-1 demonstrating a reliable performance. Looking to its environmental application, the ERGO/Au-µEA sensor was used for isoniazid quantification in lagoon, river, tap water and synthetic effluent spiked samples with recovery values between 92.5 and 108.4%. Thus, this research field opens up new possibilities in global water-related issues contributing with innovative sustainable solutions.


Subject(s)
Drug Contamination , Isoniazid , Microscopy, Electron, Scanning , Water
2.
Talanta ; 218: 121133, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32797890

ABSTRACT

This work propose the fabrication and characterization of a Pt microelectrode integrated with a silver quasi-reference counter electrode (Pt/AgQRCE) for real time amperometric measurements of hydrogen peroxide electrochemically generated by water oxidation on Nb-supported boron doped diamond (Ni/BDD) anode. The developed electroanalytical method requires a very small sample volume and has higher sensitivity when compared to the conventional spectrophotometric analysis using ammonium metavanadate. The experiments were performed with Nb/BDD anode applying current densities of 30, 60, 90 and 120 mA cm-2 in 0.10 mol L-1 HClO4 supporting electrolyte showed that H2O2 production increase in the first 90 min of electrolysis and then reaches a plateau in both off-line and real time measurements. For the first 90 min, the electrogeneration of H2O2 exhibited a pseudo zero-order kinetics. The results obtained by the electrochemical amperometric analysis were compared to a spectrophotometric methodology reported on the literature and, at 95% confidence level the two methods do not demonstrated significant difference.

SELECTION OF CITATIONS
SEARCH DETAIL