Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Commun ; 6: 8596, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26469997

ABSTRACT

When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light.

2.
Phys Rev Lett ; 115(4): 043001, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26252678

ABSTRACT

The presence of a weak second-harmonic field in an intense-laser ionization experiment affects the momentum-resolved electron yield, depending on the relative phase between the ω and the 2ω component. The proposed two-color "phase-of-the-phase spectroscopy" quantifies for each final electron momentum a relative-phase contrast (RPC) and a phase of the phase (PP) describing how much and with which phase lag, respectively, the yield changes as a function of the relative phase. Experimental results for RPC and PP spectra for rare gas atoms and CO_{2} are presented. The spectra demonstrate a rather universal structure that is analyzed with the help of a simple model based on electron trajectories, wave-packet spreading, and (multiple) rescattering. Details in the PP and RPC spectra are target sensitive and, thus, may be used to extract structural (or even dynamical) information with high accuracy.

3.
Nat Commun ; 6: 7944, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26264422

ABSTRACT

Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.

4.
Opt Lett ; 40(13): 3137-40, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26125386

ABSTRACT

The carrier-envelope phase (CEP) dependence of few-cycle above-threshold ionization (ATI) of Xe is calibrated for use as a reference measurement for determining and controlling the absolute CEP in other interactions. This is achieved by referencing the CEP-dependent ATI measurements of Xe to measurements of atomic H, which are in turn referenced to ab initio calculations for atomic H. This allows for the accurate determination of the absolute CEP dependence of Xe ATI, which enables relatively easy determination of the offset between the relative CEP measured and/or controlled by typical devices and the absolute CEP in the interaction.

5.
Phys Rev Lett ; 112(25): 253401, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-25014813

ABSTRACT

We investigate electron-ion recombination in nanoplasmas produced by the ionization of rare-gas clusters with intense femtosecond extreme-ultraviolet (XUV) pulses. The relaxation dynamics following XUV irradiation is studied using time-delayed 790-nm pulses, revealing the generation of a large number of excited atoms resulting from electron-ion recombination. In medium-sized Ar-Xe clusters, these atoms are preferentially created in the Xe core within 10 ps after the cluster ionization. The ionization of excited atoms serves as a sensitive probe for monitoring the cluster expansion dynamics up to the ns time scale.

6.
Phys Rev Lett ; 112(7): 073003, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24579594

ABSTRACT

We report evidence for two previously unidentified effects in the ionization of rare-gas clusters by intense extreme-ultraviolet pulses. First, electron spectra indicate multistep photoemission with increasing isotropy for larger clusters due to electron-atom collisions. Second, very slow (meV) electrons are interpreted as the first experimental evidence for Rydberg-like atomic state formation in the nanoplasma expansion. Only small fractions of Xe2+ ions were found, in sharp contrast to previous results recorded under comparable conditions [Murphy et al., Phys. Rev. Lett. 101, 203401 (2008).

SELECTION OF CITATIONS
SEARCH DETAIL