Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters








Publication year range
1.
ACS Bio Med Chem Au ; 4(3): 154-164, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911908

ABSTRACT

Synthetic modification of oligodeoxynucleotides (ODNs) via conjugation to nucleic acid binding small molecules can improve hybridization and pharmacokinetic properties. In the present study, five Hoechst 33258 derived benzimidazoles were conjugated to T rich ODNs and their hybridization effectiveness was tested. Thermal denaturation studies revealed significant stabilization of complementary duplexes by ODN-benzimidazole conjugates, with the extent of stabilization being highly dependent on the length of the linker between DNA and benzimidazole. The increases in thermal stability were determined to be due to the binding of the benzimidazole moiety to the duplex. Circular dichroism and molecular modeling studies provided insights toward the influence of conjugation on duplex structure and how linker length impacts placement of the benzimidazole moiety in the minor groove. Furthermore, thermal denaturation studies with the complementary strand containing a single base mismatch or being RNA revealed that covalent conjugation of benzimidazoles to an ODN also enhances the sequence specificity. The fundamental studies reported herein provide a strategy to improve the stability and specificity properties of the ODN probes, which can be of use for targeting and diagnostics applications.

2.
ACS Infect Dis ; 10(3): 971-987, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38385613

ABSTRACT

Oligonucleotides offer a unique opportunity for sequence specific regulation of gene expression in bacteria. A fundamental question to address is the choice of oligonucleotide, given the large number of options available. Different modifications varying in RNA binding affinities and cellular uptake are available but no comprehensive comparisons have been performed. Herein, the efficiency of blocking expression of ß-galactosidase (ß-Gal) in E. coli was evaluated utilizing different antisense oligomers (ASOs). Fluorescein (FAM)-labeled oligomers were used to understand their differences in bacterial uptake. Flow cytometry analysis revealed significant differences in uptake, with high fluorescence seen in cells treated with FAM-labeled peptidic nucleic acid (PNA), phosphorodiamidate morpholino oligonucleotide (PMO) and phosphorothioate (PS) oligomers, and low fluorescence observed in cells treated with phosphodiester (PO) oligomers. Thermal denaturation (Tm) of oligomer:RNA duplexes and isothermal titration calorimetry (ITC) studies reveal that ASO binding to target RNA demonstrates a good correlation between Tm and Kd values. There was no correlation between Kd values and reduction of ß-Gal activity in bacterial cells. However, cell-free translation assays demonstrated a direct relationship between Kd values and inhibition of gene expression by antisense oligomers, with tight binding oligomers such as LNA being the most efficient. Membrane active compounds such as polymyxin B and A22 further improved the cellular uptake of FAM-PNA and FAM-PS oligomers in wild-type E. coli cells. PNA and PMO were most effective in cellular uptake and reducing ß-Gal activity as compared to oligomers with PS or those with PO linkages. Overall, cell uptake of the oligomers is shown as the key determinant in predicting their differences in bacterial antisense inhibition, and the RNA affinity is the key determinant in inhibition of gene expression in cell free systems.


Subject(s)
Escherichia coli , Oligonucleotides, Antisense , Oligonucleotides, Antisense/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Oligonucleotides , Morpholinos , RNA/chemistry , RNA/metabolism , Gene Expression
3.
Sci Rep ; 14(1): 2403, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287070

ABSTRACT

With the recent success of lipid nanoparticle (LNP) based SARS-CoV-2 mRNA vaccines, the potential for RNA therapeutics has gained widespread attention. LNPs are promising non-viral delivery vectors to protect and deliver delicate RNA therapeutics, which are ineffective and susceptible to degradation alone. While food and drug administration (FDA) approved formulations have shown significant promise, benchmark lipid formulations still require optimization and improvement. In addition, the translatability of these formulations for several different RNA cargo sizes has not been compared under the same conditions. Herein we analyze "gold standard" lipid formulations for encapsulation efficiency of various non-specific RNA cargo lengths representing antisense oligonucleotides (ASO), small interfering RNA (siRNA), RNA aptamers, and messenger RNA (mRNA), with lengths of 10 bases, 21 base pairs, 96 bases, 996 bases, and 1929 bases, respectively. We evaluate encapsulation efficiency as the percentage of input RNA encapsulated in the final LNP product (EEinput%), which shows discrepancy with the traditional calculation of encapsulation efficiency (EE%). EEinput% is shown to be < 50% for all formulations tested, when EE% is consistently > 85%. We also compared formulations for LNP size (Z-average) and polydispersity index (PDI). LNP size does not appear to be strongly influenced by cargo size, which is a counterintuitive finding. Thoughtful characterization of LNPs, in parallel with consideration of in vitro or in vivo behavior, will guide design and optimization for better understanding and improvement of future RNA therapeutics.


Subject(s)
Benchmarking , Nanoparticles , Liposomes , RNA, Small Interfering/genetics , RNA, Messenger/genetics , Lipids
4.
Front Chem ; 11: 1232514, 2023.
Article in English | MEDLINE | ID: mdl-37671393

ABSTRACT

G-quadruplex-forming nucleic acids have evolved to have applications in biology, drug design, sensing, and nanotechnology, to name a few. Together with the structural understanding, several attempts have been made to discover and design new classes of chemical agents that target these structures in the hope of using them as future therapeutics. Here, we report the binding of aminoglycosides, in particular neomycin, to parallel G-quadruplexes that exist as G-quadruplex monomers, dimers, or compounds that have the propensity to form dimeric G-quadruplex structures. Using a combination of calorimetric and spectroscopic studies, we show that neomycin binds to the parallel G-quadruplex with affinities in the range of Ka ∼ 105-108 M-1, which depends on the base composition, ability to form dimeric G-quadruplex structures, salt, and pH of the buffer used. At pH 7.0, the binding of neomycin was found to be electrostatically driven potentially through the formation of ion pairs formed with the quadruplex. Lowering the pH resulted in neomycin's association constants in the range of Ka ∼ 106-107 M-1 in a salt dependent manner. Circular dichroism (CD) studies showed that neomycin's binding does not cause a change in the parallel conformation of the G-quadruplex, yet some binding-induced changes in the intensity of the CD signals were seen. A comparative binding study of neomycin and paromomycin using d(UG4T) showed paromomycin binding to be much weaker than neomycin, highlighting the importance of ring I in the recognition process. In toto, our results expanded the binding landscape of aminoglycosides where parallel G-quadruplexes have been discovered as one of the high-affinity sites. These results may offer a new understanding of some of the undesirable functions of aminoglycosides and help in the design of aminoglycoside-based G-quadruplex binders of high affinity.

5.
Biochemistry ; 62(11): 1755-1766, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37172221

ABSTRACT

DNA adopts a number of conformations that can affect its binding to other macromolecules. The conformations (A, B, Z) can be sequence- and/or solution-dependent. While AT-rich DNA sequences generally adopt a Canonical B-form structure, GC-rich sequences are more promiscuous. Recognition of GC-rich nucleic acids by small molecules has been much more challenging than the recognition of AT-rich duplexes. Spectrophotometric and calorimetric techniques were used to characterize the binding of neomycin-class aminoglycosides to a GC-rich DNA duplex, G4C4, in various ionic and pH conditions. Our results reveal that binding enhances the thermal stability of G4C4, with thermal enhancement decreasing with increasing pH and/or Na+ concentration. Although G4C4 bound to aminoglycosides demonstrated a mixed A- and B-form conformation, circular dichroism studies indicate that binding induces a conformational shift toward A-form DNA. Isothermal titration calorimetry studies reveal that aminoglycoside binding to G4C4 is linked to the uptake of protons at pH = 7.0 and that this uptake is pH-dependent. Increased pH and/or Na+ concentration results in a decrease in G4C4 affinity for the aminoglycosides. The binding affinities of the aminoglycosides follow the expected hierarchy: neomycin > paromomycin > ribostamycin. The salt dependence of DNA binding affinities of aminoglycosides is consistent with at least two drug NH3+ groups participating in electrostatic interactions with G4C4. These studies further embellish our understanding of the many factors facilitating recognition of GC-rich DNA structures as guided by their optimum charge and shape complementarity for small-molecule amino sugars.


Subject(s)
Aminoglycosides , Neomycin , Neomycin/chemistry , Neomycin/metabolism , Aminoglycosides/metabolism , Anti-Bacterial Agents/chemistry , DNA/chemistry , Thermodynamics , Nucleic Acid Conformation , Binding Sites
6.
Mol Ther Nucleic Acids ; 27: 685-698, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35070496

ABSTRACT

MicroRNAs (miRs) are a class of endogenously expressed non-coding RNAs that negatively regulate gene expression within cells and participate in maintaining cellular homeostasis. By targeting 3' UTRs of target genes, individual miRs can control a wide array of gene expressions. Previous research has shed light upon the fact that aberrantly expressed miRs within cells can pertain to diseased conditions, such as cancer. Malignancies caused due to miRs are because of the high expression of onco-miRs or feeble expression of tumor-suppressing miRs. Studies have also shown miRs to engage in epithelial to mesenchymal transition (EMT), which allows cancer cells to become more invasive and metastasize. miR-21 is an onco-miR highly expressed in breast cancer cells and targets protein PTEN, which abrogates EMT. Therefore, we discuss an approach where in-house-developed peptidic amino sugar molecules have been used to target pre-miR-21 to inhibit miR-21 biogenesis, and hence antagonize its tumor-causing effect and inhibit EMT. Our study shows that small-molecule-based fine-tuning of miR expression can cause genotypic as well as phenotypic changes and also reinstates the potential and importance of nucleic acid therapeutics.

7.
Sci Rep ; 11(1): 11614, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078922

ABSTRACT

Plazomicin is currently the only next-generation aminoglycoside approved for clinical use that has the potential of evading the effects of widespread enzymatic resistance factors. However, plazomicin is still susceptible to the action of the resistance enzyme AAC(2')-Ia from Providencia stuartii. As the clinical use of plazomicin begins to increase, the spread of resistance factors will undoubtedly accelerate, rendering this aminoglycoside increasingly obsolete. Understanding resistance to plazomicin is an important step to ensure this aminoglycoside remains a viable treatment option for the foreseeable future. Here, we present three crystal structures of AAC(2')-Ia from P. stuartii, two in complex with acetylated aminoglycosides tobramycin and netilmicin, and one in complex with a non-substrate aminoglycoside, amikacin. Together, with our previously reported AAC(2')-Ia-acetylated plazomicin complex, these structures outline AAC(2')-Ia's specificity for a wide range of aminoglycosides. Additionally, our survey of AAC(2')-I homologues highlights the conservation of residues predicted to be involved in aminoglycoside binding, and identifies the presence of plasmid-encoded enzymes in environmental strains that confer resistance to the latest next-generation aminoglycoside. These results forecast the likely spread of plazomicin resistance and highlight the urgency for advancements in next-generation aminoglycoside design.


Subject(s)
Acetyltransferases/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Drug Resistance, Bacterial/genetics , Providencia/enzymology , Sisomicin/analogs & derivatives , Acetyltransferases/genetics , Acetyltransferases/metabolism , Amikacin/chemistry , Amikacin/metabolism , Amikacin/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Models, Molecular , Netilmicin/chemistry , Netilmicin/metabolism , Netilmicin/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Providencia/chemistry , Providencia/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sisomicin/chemistry , Sisomicin/metabolism , Sisomicin/pharmacology , Substrate Specificity , Tobramycin/chemistry , Tobramycin/metabolism , Tobramycin/pharmacology
8.
Commun Biol ; 4(1): 729, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117352

ABSTRACT

The approval of plazomicin broadened the clinical library of aminoglycosides available for use against emerging bacterial pathogens. Contrarily to other aminoglycosides, resistance to plazomicin is limited; still, instances of resistance have been reported in clinical settings. Here, we present structural insights into the mechanism of plazomicin action and the mechanisms of clinical resistance. The structural data reveal that plazomicin exclusively binds to the 16S ribosomal A site, where it likely interferes with the fidelity of mRNA translation. The unique extensions to the core aminoglycoside scaffold incorporated into the structure of plazomicin do not interfere with ribosome binding, which is analogously seen in the binding of this antibiotic to the AAC(2')-Ia resistance enzyme. The data provides a structural rationale for resistance conferred by drug acetylation and ribosome methylation, i.e., the two mechanisms of resistance observed clinically. Finally, the crystal structures of plazomicin in complex with both its target and the clinically relevant resistance factor provide a roadmap for next-generation drug development that aims to ameliorate the impact of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Sisomicin/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Binding Sites , Crystallography, X-Ray , Drug Resistance, Bacterial , Methylation , Providencia/drug effects , Providencia/metabolism , RNA, Ribosomal, 16S/metabolism , RNA, Transfer/metabolism , Ribosomes/metabolism , Sisomicin/chemistry , Sisomicin/metabolism , Sisomicin/pharmacology , Structure-Activity Relationship
9.
Front Chem ; 8: 60, 2020.
Article in English | MEDLINE | ID: mdl-32117884

ABSTRACT

G-quadruplexes have been characterized as structures of vital importance in the cellular functioning of several life forms. They have subsequently been established to serve as a therapeutic target of several diseases including cancer, HIV, tuberculosis and malaria. In this paper, we report the binding of aminosugar-intercalator conjugates with a well-studied anti-parallel G-quadruplex derived from Oxytricha Nova G-quadruplex DNA. Of the four neomycin-intercalator conjugates studied with varying surface areas, BQQ-neomycin conjugate displayed the best binding to this DNA G-quadruplex structure with an association constant of K a = (1.01 ±0.03) × 107 M-1 which is nearly 100-fold higher than the binding of neomycin to this quadruplex. The binding of BQQ-neomycin displays a binding stoichiometry of 1:1 indicating the presence of a single and unique binding site for this G-quadruplex. In contrast, the BQQ-neomycin displays very weak binding to the bacterial A-site rRNA sequence showing that BQQ-does not enhance the neomycin binding to its natural target, the bacterial rRNA A-site. The BQQ-neomycin conjugate is prone to aggregation even at low micromolar concentrations (4 µM) leading to some ambiguities in the analysis of thermal denaturation profiles. Circular dichroism experiments showed that binding of BQQ-neomycin conjugate causes some structural changes in the quadruplex while still maintaining the overall anti-parallel structure. Finally, the molecular docking experiments suggest that molecular surface plays an important role in the recognition of a second site on the G-quadruplex. Overall, these results show that molecules with more than one binding moieties can be made to specifically recognize G-quadruplexes with high affinities. The dual binding molecules comprise of quadruplex groove binding and intercalator units, and the molecular surface of the intercalator plays an important part in enhancing binding interaction to the G-quadruplex structure.

10.
Sci Rep ; 9(1): 14171, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578425

ABSTRACT

Bisbenzimidazoles with terminal alkynyl linkers, selective inhibitors of bacterial topoisomerase I, have been evaluated using bacterial cytological profiling (BCP) to ascertain their mechanism of action and screened for synergism to improve Gram-negative bacterial coverage. Principal component analysis of high throughput fluorescence images suggests a dual-mechanism of action affecting DNA synthesis and cell membrane integrity. Fluorescence microscopy of bacteria challenged with two of the alkynyl-benzimidazoles revealed changes in the cellular ultrastructure that differed from topoisomerase II inhibitors including induction of spheroplasts and membrane lysis. The cytoskeleton recruitment enzyme inhibitor A22 in combination with one of the alkynyl-benzimidazoles was synergistic against Acinetobacter baumannii and Escherichia coli. Gram-positive coverage remained unchanged in the A22-alkynyl bisbenzimidazole combination. Efflux inhibitors were not synergistic, suggesting that the Gram-negative outer membrane was a significant barrier for alkynyl-bisbenzimidazole uptake. Time-kill assays demonstrated the A22-bisbenzimidazole combination had a similar growth inhibition curve to that of norfloxacin in E.coli. Bisbenzimidazoles with terminal alkynyl linkers likely impede bacterial growth by compromising cell membrane integrity and by interfering with DNA synthesis against Gram-positive pathogens and in the synergistic combination against Gram-negative pathogens including E. coli and multidrug-resistant A. baumanii.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bisbenzimidazole/analogs & derivatives , Escherichia coli/drug effects , Topoisomerase I Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Bisbenzimidazole/pharmacology , Cell Membrane/drug effects , Drug Synergism , Topoisomerase I Inhibitors/chemistry
11.
Methods Enzymol ; 623: 291-314, 2019.
Article in English | MEDLINE | ID: mdl-31239051

ABSTRACT

RNA targeted high-throughput assays that allow for rapid detection of high affinity binding ligands are important in RNA recognition studies. A number for fluorescent dyes have been reported that can assist in rapidly identifying nucleic acid (RNA) binding elements without the need for immobilization of RNA or the ligand. A number of these dyes are planar aromatic molecules that bind non-specifically to nucleic acids and often distort their parent nucleic acid structures leading to ambiguity in the interpretation of results. In this light, we report here, the use of an aminoglycoside (neomycin) based fluorescent probe (F-Neo) which can reversibly bind to different RNA motifs and help identify ligands with needed affinity and selectivity, without any immobilization of the probe or the target. In this chapter, we provide the details of the assay development, experimental considerations and data analysis to use the probe and identify novel ligands. We then provide a brief introduction to calorimetry (ITC) and circular dichroism (CD) spectroscopy based methods in validating the binding of such identified compounds.


Subject(s)
Fluorescent Dyes/metabolism , Neomycin/metabolism , RNA/metabolism , Spectrometry, Fluorescence/methods , Aminoglycosides/chemistry , Aminoglycosides/metabolism , Binding Sites , Calorimetry/methods , Circular Dichroism/methods , Drug Discovery/methods , Fluorescent Dyes/chemistry , Ligands , Models, Molecular , Neomycin/analogs & derivatives , RNA/chemistry
12.
Methods Mol Biol ; 1973: 147-162, 2019.
Article in English | MEDLINE | ID: mdl-31016700

ABSTRACT

Aminoglycoside functionalization as a tool for targeting natural and unnatural nucleic acids holds great promise in their development as diagnostic probes and medicinally relevant compounds. Simple synthetic procedures designed to easily and quickly manipulate amino sugar (neomycin, kanamycin) to more powerful and selective ligands are presented in this chapter. We describe representative procedures for (a) aminoglycoside conjugation and (b) preliminary screening for their nucleic acid binding and selectivity.


Subject(s)
Aminoglycosides/chemistry , Aminoglycosides/metabolism , Anti-Bacterial Agents/metabolism , Kanamycin/metabolism , Neomycin/metabolism , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Anti-Bacterial Agents/chemistry , Kanamycin/chemistry , Neomycin/chemistry
13.
Eur J Med Chem ; 163: 381-393, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30530174

ABSTRACT

The development of new ligands that have comparable or enhanced therapeutic efficacy relative to current drugs is vital to the health of the global community in the short and long term. One strategy to accomplish this goal is to functionalize sites on current antimicrobials to enhance specificity and affinity while abating resistance mechanisms of infectious organisms. Herein, we report the synthesis of a series of pyrene-neomycin B (PYR-NEO) conjugates, their binding affinity to A-site RNA targets, resistance to aminoglycoside-modifying enzymes (AMEs), and antibacterial activity against a wide variety of bacterial strains of clinical relevance. PYR-NEO conjugation significantly alters the affinities of NEO for bacterial A-site targets. The conjugation of PYR to NEO significantly increased the resistance of NEO to AME modification. PYR-NEO conjugates exhibited broad-spectrum activity towards Gram-positive bacteria, including improved activity against NEO-resistant methicillin-resistant Staphylococcus aureus (MRSA) strains.


Subject(s)
Aminoglycosides/pharmacology , Drug Resistance, Bacterial/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/drug therapy , Animals , Binding Sites , Framycetin/chemistry , Gram-Positive Bacteria/drug effects , Humans , Protein Binding , Pyrenes/chemistry , Ribosomal Proteins
14.
Medchemcomm ; 9(7): 1147-1154, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30109002

ABSTRACT

Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose cell polarity and cell-cell adhesion and gain migratory and invasive properties to become mesenchymal cells that are very vital for development, wound healing and stem cell behavior and contribute pathologically to fibrosis and cancer progression. miR21, a potent regulator of the tumor suppressor gene PTEN, can be silenced to reverse EMT, thereby providing an attractive target for abrogating the malignant behavior of breast cancer. Here, we report the design, synthesis and binding of a peptidic-aminoglycoside (PA) based chemical library against pre-miR21 that led to the identification of a group of small molecules that bind to pre-miR21 with high affinities and antagonize miR-21 maturation and function, thereby reversing EMT. The approach described here offers a promising miRNA targeting platform where such aminosugar conjugates can be similarly used to target other oncogenic miRNAs. Minor changes in the amino acid sequence allow us to tailor the binding effectiveness and downstream biological effects, thus making this approach a potentially tunable method of regulation of miRNA function.

15.
Beilstein J Org Chem ; 14: 1051-1086, 2018.
Article in English | MEDLINE | ID: mdl-29977379

ABSTRACT

As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA-protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.

16.
ACS Infect Dis ; 4(2): 196-207, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29227087

ABSTRACT

Alkylated aminoglycosides and bisbenzimidazoles have previously been shown to individually display antifungal activity. Herein, we explore for the first time the antifungal activity (in liquid cultures and in biofilms) of ten alkylated aminoglycosides covalently linked to either mono- or bisbenzimidazoles. We also investigate their toxicity against mammalian cells, their hemolytic activity, and their potential mechanism(s) of action (inhibition of fungal ergosterol biosynthetic pathway and/or reactive oxygen species (ROS) production). Overall, many of our hybrids exhibited broad-spectrum antifungal activity. We also found them to be less cytotoxic to mammalian cells and less hemolytic than the FDA-approved antifungal agents amphotericin B and voriconazole, respectively. Finally, we show with our best derivative (8) that the mechanism of action of our compounds is not the inhibition of ergosterol biosynthesis, but that it involves ROS production in yeast cells.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Bisbenzimidazole/chemistry , Framycetin/chemistry , Biofilms/drug effects , Candida albicans/drug effects , Candida albicans/metabolism , Dose-Response Relationship, Drug , Hemolysis , Microbial Sensitivity Tests , Molecular Structure , Reactive Oxygen Species/metabolism , Sterols/chemistry , Time Factors
17.
RSC Adv ; 7(66): 41435-41443, 2017.
Article in English | MEDLINE | ID: mdl-29276583

ABSTRACT

Recognition of nucleic acids remains an important endeavor in biology. Nucleic acids adopt shapes ranging from A-form (RNA and GC rich DNA) to B-form (AT rich DNA). We show, in this contribution, shape-specific recognition of A-U rich RNA duplex by a neomycin (Neo)-polydiacetylene (PDA) complex. PDA assemblies are fabricated by using a well-known diacetylene (DA) monomer, 10,12-pentacosadiynoic acid (PCDA). The response of poly(PCDA) assemblies is generated by mixing with a modified neomycin-PCDA monomer (Neo-PCDA). The functionalization by neomycin moiety provides specific binding with homopolyribonucleotide poly (rA) - poly (rU) stimulus. Various types of alcohols are utilized as additives to enhance the sensitivity of poly(PCDA)/Neo-PCDA assemblies. A change of absorption spectra is clearly observed when a relatively low concentration of poly (rA)-poly (rU) is added into the system. Furthermore, poly(PCDA)/Neo-PCDA shows a clear specificity for poly (rA)-poly (rU) over the corresponding DNA duplex. The variation of linker between neomycin moiety and conjugated PDA backbone is found to significantly affect its sensitivity. We also investigate other parameters including the concentration of Neo-PCDA and the DA monomer structure. Our results provide here preliminary data for an alternative approach to improve the sensitivity of PDA utilized in biosensing and diagnostic applications.

18.
Biochemistry ; 56(49): 6434-6447, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29131946

ABSTRACT

Small molecules that modulate biological functions are targets of modern day drug discovery efforts. In a common platform fragment-based drug discovery, two fragments that bind to adjacent sites on a target are identified and are then linked together using different linkers to identify the linkage for optimum activity. What are not known from these studies are the effects these linkers, which typically contain C, H, and O atoms, have on the properties of the individual fragment. Herein, we investigate such effects in a bisbenzimidazole fragment whose derivatives have a wide range of therapeutic applications in nucleic acid recognition, sensing, and photodynamic therapy and as cellular probes. We report a dramatic effect of linker length and composition of alkynyl (clickable) Hoechst 33258 derivatives in target binding and cell uptake. We show that the binding of Hoechst 33258-modeled bisbenzimidazoles (1-9) that contain linkers of varying lengths (3-21 atoms) display length- and composition-dependent variation in B-DNA stabilization using a variety of spectroscopic methods. For a dodecamer DNA duplex, the thermal stabilization varied from 0.3 to 9.0 °C as the linker length increased from 3 to 21 atoms, respectively. Compounds with linker lengths of ≤11 atoms (such as compounds 1 and 5) are localized in the nucleus, while compounds with long linkers (such as compounds 8 and 9) are distributed in the extranuclear space, as well, with possible interactions with extranuclear targets. These findings provide insights into future drug design by revealing how linkers can influence the biophysical and cellular properties of individual drug fragments.


Subject(s)
Bisbenzimidazole/chemistry , DNA, B-Form/chemistry , Binding Sites , Kinetics , Molecular Structure , Spectrometry, Fluorescence
19.
Biochemistry ; 56(40): 5288-5299, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28895721

ABSTRACT

Diversity in eukaryotic rRNA structure and function offers possibilities of therapeutic targets. Unlike ribosomes of prokaryotes, eukaryotic ribosomes contain species-specific rRNA expansion segments (ESs) with idiosyncratic structures and functions that are essential and specific to some organisms. Here we investigate expansion segment 7 (ES7), one of the largest and most variable expansions of the eukaryotic ribosome. We hypothesize that ES7 of the pathogenic fungi Candida albicans (ES7CA) could be a prototypic drug target. We show that isolated ES7CA folds reversibly to a native-like state. We developed a fluorescence displacement assay using an RNA binding fluorescent probe, F-neo. F-neo binds tightly to ES7CA with a Kd of 2.5 × 10-9 M but binds weakly to ES7 of humans (ES7HS) with a Kd estimated to be greater than 7 µM. The fluorescence displacement assay was used to investigate the affinities of a library of peptidic aminosugar conjugates (PAs) for ES7CA. For conjugates with highest affinities for ES7CA (NeoRH, NeoFH, and NeoYH), the lowest dose needed to induce mortality in C. albicans (minimum inhibitory concentration, MIC) was determined. PAs with the lowest MIC values were tested for cytotoxicity in HEK293T cells. Molecules with high affinity for ES7CA in vitro induce mortality in C. albicans but not in HEK293T cells. The results are consistent with the hypothesis that ESs represent useful targets for chemotherapeutics directed against eukaryotic pathogens.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/cytology , Candida albicans/drug effects , Ribosomes/drug effects , Ribosomes/metabolism , Antifungal Agents/toxicity , Candida albicans/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , Protein Unfolding , Ribosomes/chemistry , Temperature
20.
J Med Chem ; 60(12): 4904-4922, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28513176

ABSTRACT

A series of Hoechst 33258 based mono- and bisbenzimidazoles have been synthesized and their Escherichia coli DNA topoisomerase I inhibition, binding to B-DNA duplex, and antibacterial activity has been evaluated. Bisbenzimidazoles with alkynyl side chains display excellent E. coli DNA topoisomerase I inhibition properties with IC50 values <5.0 µM. Several bisbenzimidazoles (3, 6, 7, 8) also inhibit RNA topoisomerase activity of E. coli DNA topoisomerase I. Bisbenzimidazoles inhibit bacterial growth much better than monobenzimidazoles for Gram-positive strains. The minimum inhibitory concentration (MIC) was much lower for Gram positive bacteria (Enterococcus spp. and Staphylococcus spp., including two MRSA strains 0.3-8 µg/mL) than for the majority of Gram negative bacteria (Pseudomonas aeruginosa, 16-32 µg/mL, Klebsiella pneumoniae > 32 µg/mL). Bisbenzimidazoles showed varied stabilization of B-DNA duplex (1.2-23.4 °C), and cytotoxicity studies show similar variation dependent upon the side chain length. Modeling studies suggest critical interactions between the inhibitor side chain and amino acids of the active site of DNA topoisomerase I.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzimidazoles/pharmacology , Bisbenzimidazole/chemistry , Escherichia coli/drug effects , Topoisomerase I Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Benzimidazoles/chemistry , Cell Line, Tumor , Chemistry Techniques, Synthetic , DNA/metabolism , Drug Evaluation, Preclinical/methods , Drug Screening Assays, Antitumor/methods , Escherichia coli/genetics , Escherichia coli Proteins/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Isomerases/antagonists & inhibitors , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Topoisomerase I Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL