Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
ACS Omega ; 9(40): 41107-41129, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39398164

ABSTRACT

This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.

2.
Heliyon ; 10(17): e36767, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281529

ABSTRACT

Background: Cyclophosphamide (CPA) have significant effects on ovarian follicles which lead to ovarian toxicity and impair the normal female reproductive function. This study aimed to evaluate the dose-dependent effects of CPA on rat follicle numbers. Methods: The experimental groups consisted of rats administered a single intraperitoneal injection of CPA at doses of either 50, 75,150, or 200 mg/kg followed by daily doses of 8 mg/kg for 14 days and control group given no treatment. After the treatment period, the histological evaluation was done. Results: Primordial and primary follicles were affected by all doses of CPA, but differential follicle counts revealed that graaf and preantral follicles were most sensitive to CPA, followed by primary and primordial follicles. The greatest reduction in all type of studied follicles caused by CPA doses of 50 mg/kg. Conclusion: Differential follicle counts revealed that CPA-induced ovarian toxicity is exhibited in structural feature of the ovary, particularly in destruction of graaf and preantral follicles in a dose-dependent manner so that the highest decrease in all type of studied follicles caused by 50 mg/kg of CPA and is suggested as the best concentration for ovotoxicity induction. These findings give insight into ovarian response to structural disruption of folliculogenesis.

3.
J Mater Chem B ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283024

ABSTRACT

Diabetic wounds pose a significant challenge in healthcare due to impaired healing and increased risk of complications. In recent years, various drug delivery systems with stimuli-responsive features have been developed to address these issues. These systems enable precise dosage control and tailored drug release, promoting comprehensive tissue repair and regeneration. This review explores targeted therapeutic agents, such as carboxymethyl chitosan-alginate hydrogel formulations, nanofiber mats, and core-shell nanostructures, for diabetic wound healing. Additionally, the integration of nanotechnology and multifunctional biomimetic scaffolds shows promise in enhancing wound healing outcomes. Future research should focus on optimizing the design, materials, and printing parameters of 3D-bio-printed wound dressings, as well as exploring combined strategies involving the simultaneous release of antibiotics and nitric oxide for improved wound healing.

4.
Heliyon ; 10(11): e32566, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961905

ABSTRACT

In recent years, there has been a notable surge in the development of engineered bone scaffolds intended for the repair of bone defects. While autografts and allografts have traditionally served as the primary methods in bone tissue engineering, their inherent limitations have spurred the exploration of novel avenues in biomedical implant development. The emergence of bone scaffolds not only facilitates bone reconstruction but also offers a platform for the targeted delivery of therapeutic agents. There exists a pervasive interest in leveraging various drugs, proteins, growth factors, and biomolecules with osteogenic properties to augment bone formation, as the enduring side effects associated with current clinical modalities necessitate the pursuit of safer alternatives. Curcumin, the principal bioactive compound found in turmeric, has demonstrated notable efficacy in regulating the proliferation and differentiation of bone cells while promoting bone formation. Nevertheless, its utility is hindered by restricted water solubility and poor bioavailability. Strategies aimed at enhancing the solubility, stability, and bioavailability of curcumin, including formulation techniques such as liposomes and nanoparticles or its complexation with metals, have been explored. This investigation is dedicated to exploring the impact of curcumin on the proliferation, differentiation, and migration of osteocytes, osteoblasts, and osteoclasts.

5.
Int J Biol Macromol ; 253(Pt 8): 127607, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37871723

ABSTRACT

The significant clinical challenge presented by diabetic wounds is due to their impaired healing process and increased risk of complications. It is estimated that a foot ulcer will develop at some point in the lives of 15-25 % of diabetic patients. Serious complications, including infection and amputation, are often led to by these wounds. In the field of tissue engineering and regenerative medicine, nanofiber-based wound dressings have emerged in recent years as promising therapeutic strategies for diabetic wound healing. Hyaluronic acid (HA), among various nanofiber materials, has gained considerable attention due to its unique properties, including biocompatibility, biodegradability, and excellent moisture retention capacity. By promoting skin hydration and controlling inflammation, a crucial role in wound healing is played by HA. Wounds are also helped to heal faster by HA through the regulation of inflammation levels and signaling the body to build more blood vessels in the damaged area. Great potential in various applications, including wound healing, has been shown by the development and use of nanofiber formulations in medicine. However, challenges and limitations associated with nanofibers in medicine exist, such as reproducibility, proper characterization, and biological evaluation. By providing a biomimetic environment that enhances re-epithelialization and facilitates the delivery of active substances, nanofibers promote wound healing. In accelerating wound healing, promising results have been shown by HA-contained nanofiber formulations in diabetic wounds. Key strategies employed by these formulations include revascularization, modulation of the inflammation microenvironment, delivery of active substances, photothermal nanofibers, and nanoparticle-loaded fabrics. Particularly crucial is revascularization as it restores blood flow to the wound area, promoting healing. Wound healing can also be enhanced by modulating the inflammation microenvironment through controlling inflammation levels. Future perspectives in this field involve addressing the current challenges and limitations of nanofiber technology and further optimizing HA-contained nanofiber formulations for improved efficacy in diabetic wound healing. This includes exploring new fabrication techniques, enhancing the biocompatibility and biodegradability of nanofibers, and developing multifunctional nanofibers for targeted drug delivery. Not only does writing a review in the field of nanofiber-based wound dressings, particularly those containing hyaluronic acid, allow us to consolidate our current knowledge and understanding but also broadens our horizons. An opportunity is provided to delve deeper into the intricacies of this innovative therapeutic strategy, explore its potential and limitations, and envision future directions. By doing so, a contribution can be made to the ongoing advancements in tissue engineering and regenerative medicine, ultimately improving the quality of life for patients with diabetic wounds.


Subject(s)
Diabetes Mellitus , Nanofibers , Humans , Hyaluronic Acid/therapeutic use , Nanofibers/therapeutic use , Quality of Life , Reproducibility of Results , Wound Healing , Inflammation
6.
Life Sci ; 330: 122035, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37611693

ABSTRACT

Spinal cord injury (SCI) is a serious problem with a high prevalence worldwide. The weak capability of the spinal cord for regeneration in association with upregulation of inflammatory factors is two key obstacles against a full SCI repair. Curcumin is a natural substance with anti-inflammatory and neuroprotective effects. Here, we have used a combined strategy using stem cells and hybrid hydrogel scaffolds loaded with curcumin for SCI repair. Curcumin-loaded PLGA nanoparticles were prepared, characterized, and encapsulated into gelatin/alginate hydrogel scaffolds, which were then seeded by human endometrial stem cells (hEnSCs). The resulting construct was studied using in vitro and in vivo experiments on rat models. DLS, SEM, Zeta potential, and FTIR data confirmed the successful addition of curcumin to PLGA nanoparticles. SEM analyses indicated the successful addition of curcumin-loaded nanoparticles into the gelatin/alginate scaffold, as well as the adherence of the seeded EnSCs. Based on the results, the prepared constructs not only allowed the controlled release of curcumin but also could support the survival and growth of hEnSCs. Based on the results of BBB and histological experiments, the highest BBB score was related to the combined strategy, consistent with histological outcomes, in which our hEnSC-seeded gelatin/alginate scaffold containing curcumin-loaded nanoparticles led to improved structures of the white and gray matters in the SCI site, being indicative of the superior nerve fiber regeneration, compared to other studied groups. These results indicate the efficiency of the proposed method for SCI repair and broaden the scope for subsequent studies on spinal cord regeneration.


Subject(s)
Curcumin , Nanoparticles , Spinal Cord Injuries , Spinal Cord Regeneration , Humans , Animals , Rats , Curcumin/pharmacology , Gelatin , Hydrogels , Spinal Cord Injuries/drug therapy , Alginates
SELECTION OF CITATIONS
SEARCH DETAIL