Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 26(13): 3207-3211, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27038498

ABSTRACT

Previously we disclosed the discovery of potent Late INa current inhibitor 2 (GS-458967, IC50 of 333nM) that has a good separation of late versus peak Nav1.5 current, but did not have a favorable CNS safety window due to high brain penetration (3-fold higher partitioning into brain vs plasma) coupled with potent inhibition of brain sodium channel isoforms (Nav1.1, 1.2, 1.3). We increased the polar surface area from 50 to 84Å(2) by adding a carbonyl to the core and an oxadiazole ring resulting in 3 GS-462808 that had lower brain penetration and serendipitously lower activity at the brain isoforms. Compound 3 has an improved CNS window (>20 rat and dog) relative to 2, and improved anti-ischemic potency relative to ranolazine. The development of 3 was not pursued due to liver lesions in 7day rat toxicology studies.


Subject(s)
Azoles/pharmacology , Drug Discovery , Heart/drug effects , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Pyridines/pharmacology , Ranolazine/pharmacology , Sodium Channel Blockers/pharmacology , Animals , Azoles/chemical synthesis , Azoles/chemistry , Dogs , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Haplorhini , Humans , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Rabbits , Ranolazine/chemical synthesis , Ranolazine/chemistry , Rats , Sodium Channel Blockers/chemical synthesis , Sodium Channel Blockers/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 26(13): 3202-3206, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27080178

ABSTRACT

We started with a medium throughput screen of heterocyclic compounds without basic amine groups to avoid hERG and ß-blocker activity and identified [1,2,4]triazolo[4,3-a]pyridine as an early lead. Optimization of substituents for Late INa current inhibition and lack of Peak INa inhibition led to the discovery of 4h (GS-458967) with improved anti-arrhythmic activity relative to ranolazine. Unfortunately, 4h demonstrated use dependent block across the sodium isoforms including the central and peripheral nervous system isoforms that is consistent with its low therapeutic index (approximately 5-fold in rat, 3-fold in dog). Compound 4h represents our initial foray into a 2nd generation Late INa inhibitor program and is an important proof-of-concept compound. We will provide additional reports on addressing the CNS challenge in a follow-up communication.


Subject(s)
Drug Discovery , Heart/drug effects , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Pyridines/pharmacology , Ranolazine/pharmacology , Sodium Channel Blockers/pharmacology , Triazoles/pharmacology , Animals , Caco-2 Cells , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Macaca fascicularis , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Rabbits , Ranolazine/chemical synthesis , Ranolazine/chemistry , Rats , Sodium Channel Blockers/chemical synthesis , Sodium Channel Blockers/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
3.
Tetrahedron Lett ; 53(48): 6475-6478, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23139435

ABSTRACT

The Davis-Beirut reaction, which provides an efficient synthesis of 2H-indazoles and, subsequently, indazolones, is shown to proceed rapidly from o-nitrosobenzaldehyde and primary amines under both acid or base catalysis. Experimental and theoretical evidence in support of a reaction mechanism is provided in which o-nitrosobenzylidine imine is a pivotal intermediate in this N,N-bond forming heterocyclization reaction. The Davis-Beirut reaction is also shown to effectively synthesize a number of novel 3-amino-2H-indazole derivatives.

4.
Bioorg Med Chem Lett ; 22(18): 5976-8, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22892117

ABSTRACT

A number of (1H-1,2,3-triazol-1-yl)benzo[d]thiazoles were synthesized utilizing a versatile Cu-catalyzed azide-alkyne click reaction (CuAAC) on tautomeric benzo[4,5]thiazolo[3,2-d]tetrazole (1) and 2-azidobenzo[d]thiazole (2) starting materials. Moreover, one of the resulting products of this investigation, triazolbenzo[d]thiazole 22, was found to possess significant neuroprotective activity in human neuroblastoma (SH-SY5Y) cells.


Subject(s)
Benzothiazoles/pharmacology , Neuroblastoma/drug therapy , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Triazoles/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neuroblastoma/pathology , Neuroprotective Agents/chemistry , Stereoisomerism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
5.
Org Lett ; 13(5): 1060-3, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21294577

ABSTRACT

A number of novel benzo-1,3-dioxolo-, benzothiazolo-, pyrido-, and quinolino-fused 5H-benzo[d]pyrazolo[5,1-b][1,3]-oxazines and 1H-pyrazoles were synthesized utilizing an easy and effective N,N-bond forming heterocyclization reaction. In so doing, the substrate scope of this heterocyclization reaction, which starts with o-nitroheterocyclic aldehydes, was expanded to provide several unique heterocyclic compounds for biological screening. This work further demonstrates the versatility of this simple, base-mediated, one-pot heterocyclization method in the construction of novel heterocycles.


Subject(s)
Benzene Derivatives/chemical synthesis , Benzothiazoles/chemical synthesis , Dioxoles/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Pyrazoles/chemical synthesis , Pyridines/chemical synthesis , Quinolines/chemical synthesis , Aldehydes/chemistry , Benzene Derivatives/chemistry , Benzothiazoles/chemistry , Combinatorial Chemistry Techniques , Cyclization , Dioxoles/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Indazoles/chemical synthesis , Indazoles/chemistry , Molecular Structure , Oxazines/chemical synthesis , Oxazines/chemistry , Pyrazoles/chemistry , Pyridines/chemistry , Quinolines/chemistry
6.
J Med Chem ; 53(9): 3718-29, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20359225

ABSTRACT

Chorismate-utilizing enzymes are attractive antimicrobial drug targets due to their absence in humans and their central role in bacterial survival and virulence. The structural and mechanistic homology of a group of these inspired the goal of discovering inhibitors that target multiple enzymes. Previously, we discovered seven inhibitors of 4-amino-4-deoxychorismate synthase (ADCS) in an on-bead, fluorescent-based screen of a 2304-member one-bead-one-compound combinatorial library. The inhibitors comprise PAYLOAD and COMBI stages, which interact with active site and surface residues, respectively, and are linked by a SPACER stage. These seven compounds, and six derivatives thereof, also inhibit two other enzymes in this family, isochorismate synthase (IS) and anthranilate synthase (AS). The best binding compound inhibits ADCS, IS, and AS with K(i) values of 720, 56, and 80 microM, respectively. Inhibitors with varying SPACER lengths show the original choice of lysine to be optimal. Lastly, inhibition data confirm the PAYLOAD stage directs the inhibitors to the ADCS active site.


Subject(s)
Anthranilate Synthase/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Carbon-Nitrogen Ligases/antagonists & inhibitors , Chorismic Acid/metabolism , Drug Delivery Systems , Enzyme Inhibitors/chemistry , Intramolecular Transferases/antagonists & inhibitors , Catalytic Domain , Humans , Transaminases
7.
Inorg Chem ; 43(9): 2988-97, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15106989

ABSTRACT

The Mn(II) and Mn(III) complexes of the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H; H is the dissociable carboxamide H), namely, [Mn(PaPy3)(H2O)]ClO4 (1) and [Mn(PaPy3)(Cl)]ClO4 (2), with bound carboxamido nitrogen have been isolated and characterized. The high-spin Mn(II) center in 1 is very sensitive to dioxygen, and this complex is rapidly converted into 2 upon reaction with Cl- in air. The bound carboxamido nitrogen in 1 is responsible for this sensitivity toward oxidation since the analogous Schiff base complex [Mn(SBPy3)Cl]ClO4 (4) is very resistant to oxidation. Reaction of NO with 1 affords the diamagnetic [Mn-NO]6 nitrosyl [Mn(PaPy3)(NO)]ClO4 (5). Complexes with no bound carboxamido nitrogen such as 4 and [Mn(PaPy3H)(Cl)2] (3) do not react with NO. No reaction with NO is observed with the Mn(III) complexes 2 and [Mn(PaPy3)(MeCN)]2+ either. Collectively these reactions indicate that NO reacts only with the Mn(II) center ligated to at least one carboxamido nitrogen. Both the carbonyl and N-O stretching frequencies (nu(CO) and nu(NO)) of the present and related complexes strongly suggest a [low-spin Mn(II)-NO*] formulation for 5. The alternative description [low-spin Mn(I)-NO+] is not supported by the spectroscopic and redox behavior of 5. Complex 5 is the first example of a [Mn-NO]6 nitrosyl that exhibits photolability of NO upon illumination with low-intensity tungsten lamps in solvents such as MeCN and H2O. The rapid NO loss from 5 leads to the formation of the corresponding solvato species [Mn(PaPy3)(MeCN)]2+ under aerobic conditions. Oxidation of 5 with (NH4)2[Ce(NO3)6] in MeCN affords the highly reactive paramagnetic (S = 1/2) [MnNO]5 nitrosyl [Mn(PaPy3)(NO)](NO3)2 (6) in high yield. Spectroscopic and magnetic studies confirm a [low-spin Mn(II)-NO+] formulation for 6. The N-O stretching frequencies (nu(NO)) of 5, 6, and analogous nitrosyls reported by other groups collectively suggest that nu(NO) is a better indicator of the oxidation state of NO (NO+, NO*, or NO-) in non-heme iron and other transition-metal complexes with bound NO.


Subject(s)
Manganese/chemistry , Nitric Oxide/chemistry , Nitrogen/chemistry , Nitroso Compounds/chemical synthesis , Organometallic Compounds/chemical synthesis , Ligands , Molecular Structure , Oxidation-Reduction , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL