Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 98(4): 797-807, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25180375

ABSTRACT

To determine how nutrient restriction and melatonin supplementation influence ewe and foetal hepatic and small intestinal energy use, 32 primiparous ewes on d 50 of gestation were fed 60% (RES) or 100% (ADQ) of NRC recommendations with 0 (CON) or 5 mg/d (MEL) of dietary melatonin. On d 130 of gestation, small intestine and liver were weighed and collected. Data were analysed as a completely randomized design with a 2 × 2 factorial arrangement of treatments. Liver weight (g/kg EBW) decreased (p = 0.02) in RES ewes. Jejunum weight (g/kg BW) increased (interaction p = 0.04) in ADQ-MEL ewes compared with all other treatments. Total in vitro O2 consumption (mol/min/tissue) and total citrate synthase activity (mol/min/tissue and mol/min/kg EBW) in liver decreased (p ≤ 0.03) in RES ewes. Oxygen consumption (mol/min/kg EBW) increased (interaction p = 0.02) in jejunum of ADQ-CON versus RES-MEL and ADQ-CON. Citrate synthase activity (mol/min/kg of EBW) increased (interaction p = 0.03) in jejunum of ADQ-MEL compared with RES-MEL and ADQ-CON. Foetal liver weight (g/kg BW) decreased (p = 0.02) in RES versus ADQ. Foetal small intestine weight (g/kg BW) decreased (interaction p = 0.05) in RES-MEL versus ADQ-MEL. Total O2 consumption (mol/min/tissue) and total citrate synthase activity (mol/min/kg of BW) in foetal liver decreased (p ≤ 0.05) in RES versus ADQ. Foetal small intestinal O2 consumption (mol/min/kg of BW) was greater (interaction p = 0.03) in RES-CON and ADQ-MEL than RES-MEL and ADQ-CON. Maternal nutrient restriction had a greater effect than melatonin supplementation on liver and jejunum mass and energy utilization in dams and foetuses. Because intestinal mass and energy utilization were more responsive to melatonin supplementation in ewes fed adequate nutrition compared with restricted ewes, melatonin may have limited use as a therapeutic supplement to help overcome potential negative effects of nutrient restriction.


Subject(s)
Dietary Supplements , Intestine, Small/embryology , Liver/embryology , Melatonin/pharmacology , Sheep/embryology , Sheep/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Female , Food Deprivation , Intestine, Small/metabolism , Liver/metabolism , Melatonin/administration & dosage , Oxygen Consumption , Pregnancy
2.
J Anim Sci ; 91(12): 5775-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24146152

ABSTRACT

In mid-to-late gestation, nutrient demand increases to meet the growth requirements of the conceptus and cows may alter metabolism in response to energy demands of pregnancy. By better understanding the metabolic role of pregnancy, there may be opportunities to better understand maintenance energy costs and improve overall feed efficiency. Eighteen mature Simmental/Angus crossbred cows, pregnant (PREG; n = 9) and nonpregnant (OPEN; n = 9), were used to investigate the effect of pregnancy on BW change, carcass traits, visceral organ mass, and circulating serum metabolites. Cows were blocked by day of expected parturition such that each block was slaughtered 4 to 5 wk before parturition. Cows were individually fed for ad libitum intake using Calan gates for 89 to 105 d. Cows were weighed, ultrasounded for rib (over the 12th and 13th rib) and rump fat, and a serum sample obtained at d 1, 56, and 3 to 5 d before slaughter. At slaughter, organs were removed, trimmed of fat, and weighed. Serum was analyzed for ß-hydroxybutyrate (BHBA), NEFA, glucose, urea, total cholesterol, and triiodothyronine (T3). Tissue samples from liver, kidney, sternomandibularis muscle, ruminal papillae, pancreas, and small intestinal mucosa were collected at slaughter and snap frozen in liquid N. Western blots were conducted to quantify abundance of: proliferating cell nuclear antigen (PCNA), ATP synthase, ubiquitin, and Na(+)/K+ ATPase for all tissues; PPARγ, PPARγ coactivator 1α (PGC1-α), 5'-adenosine monophosphate-activated protein kinase (AMPK) and phosphorylated-AMPK (pAMPK) for liver, muscle, and rumen; phosphoenolpyruvate carboxykinase (PEPCK) for liver and kidney; and uncoupling protein 2 (UCP2) for liver. Data were analyzed using PROC MIXED in SAS as a replicated randomized complete block. Liver weights (actual, relative to BW, relative to HCW) were heavier (P ≤ 0.02) in OPEN. Rumen mass and kidney fat weight, both relative to BW, were also greater (P ≤ 0.04) in OPEN. On d 56 and at preslaughter, PREG cows had greater (P ≤ 0.04) BHBA, NEFA and urea concentrations and lower (P = 0.04) cholesterol concentration. Hepatic Na(+)/K+ ATPase abundance was greater (P = 0.04) in PREG cows. In rumen papillae, abundance of pAMPKα was increased (P = 0.006) in PREG cows. These data indicate that PREG cows may metabolize energy reserves and alter their metabolism to meet the energetic demands of the growing fetus.


Subject(s)
Cattle/blood , Cattle/physiology , Energy Metabolism/physiology , Pregnancy, Animal , Proteins/classification , Animals , Body Weight , Female , Gene Expression Regulation/physiology , Pregnancy , Pregnancy, Animal/blood , Pregnancy, Animal/physiology , Proteins/genetics , Proteins/metabolism , Seasons , Transcriptome
3.
J Anim Sci ; 91(9): 4245-55, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23893975

ABSTRACT

Twenty-two nonlactating multiparous pregnant beef cows (639 ± 68 kg) were used to investigate the effect of dietary restriction on the abundance of selected proteins regulating cellular energy metabolism. Cows were fed at either 85% (n = 11; LOW) or 140% (n = 11; HIGH) of total NE requirements. The diet consisted of a haylage-based total mixed ration containing 20% wheat straw. Cows were slaughtered by block (predicted date of parturition), beginning 83 d after the initiation of dietary treatments and every week thereafter for 6 wk, such that each block was slaughtered at approximately 250 d of gestation. Tissue samples from liver, kidney, sternomandibularis muscle, ruminal papilli (ventral sac), pancreas, and small intestinal muscosa were collected at slaughter and snap frozen in liquid N2. Western blots were conducted to quantify abundance of proliferating cell nuclear antigen (PCNA), ATP synthase, ubiquitin, and Na/K+ ATPase for all tissues; PPARγ, PPARγ coactivator 1 α (PGC-1α), and 5´-adenosine monophosphate-activated protein kinase (AMPK) and the activated form phosphorylated-AMPK (pAMPK) for liver, muscle, and rumen; phosphoenolpyruvate carboxykinase (PEPCK) for liver and kidney; and uncoupling protein 2 (UCP2) for liver. Statistical analysis was conducted using Proc Mixed in SAS and included the fixed effects of dietary treatment, cow age, block, and the random effect of pen. Dietary treatments resulted in cows fed HIGH having greater (P ≤ 0.04) ADG and final BW than cows fed LOW. Abundance of ubiquitin in muscle was greater (P = 0.009) in cows fed LOW, and PCG-1 α in liver was greater (P = 0.03) in cows fed HIGH. Hepatic O2 consumption was greater in HIGH (P ≤ 0.04). Feed intake can influence the abundance of important metabolic proteins and suggest that protein degradation may increase in muscle from moderately nutrient restricted cows and that energy metabolism in liver increases in cows fed above NE requirements.


Subject(s)
Cattle/physiology , Energy Intake , Liver/metabolism , Oxygen Consumption , Proteins/metabolism , Animal Husbandry , Animal Nutritional Physiological Phenomena , Animals , Blotting, Western/veterinary , Citrate (si)-Synthase/metabolism , Diet/veterinary , Electrophoresis, Polyacrylamide Gel/veterinary , Energy Metabolism , Female , Organ Size , Pregnancy , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL