Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Small ; 13(44)2017 11.
Article in English | MEDLINE | ID: mdl-28960799

ABSTRACT

Cell membranes are intrinsically heterogeneous, as the local protein and lipid distribution is critical to physiological processes. Even in template systems embedding a single protein type, like purple membranes, there can be a different local response to external stimuli or environmental factors, resulting in heterogeneous conformational changes. Despite the dramatic advances of microspectroscopy techniques, the identification of the conformation heterogeneity is still a challenging task. Tip-enhanced infrared nanospectroscopy is here used to identify conformational changes connected to the hydration state of the transmembrane proteins contained in a 50 nm diameter cell membrane area, without the need for fluorescent labels. In dried purple membrane monolayers, areas with fully hydrated proteins are found among large numbers of molecules with randomly distributed hydration states. Infrared nanospectroscopy results are compared to the spectra obtained with diffraction-limited infrared techniques based on the use of synchrotron radiation, in which the diffraction limit still prevents the observation of nanoscale heterogeneity.


Subject(s)
Membrane Proteins/chemistry , Nanotechnology/methods , Purple Membrane/chemistry , Imaging, Three-Dimensional , Protein Conformation , Spectrophotometry, Infrared
2.
Nature ; 487(7405): 77-81, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22722861

ABSTRACT

The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons­coupled excitations of photons and charge carriers­in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short­more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light­matter interactions for quantum devices and biosensing applications.

3.
Nat Nanotechnol ; 7(6): 363-8, 2012 May 06.
Article in English | MEDLINE | ID: mdl-22562036

ABSTRACT

Graphene is an attractive material for optoelectronics and photodetection applications because it offers a broad spectral bandwidth and fast response times. However, weak light absorption and the absence of a gain mechanism that can generate multiple charge carriers from one incident photon have limited the responsivity of graphene-based photodetectors to ∼10(-2) A W(-1). Here, we demonstrate a gain of ∼10(8) electrons per photon and a responsivity of ∼10(7) A W(-1) in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. Strong and tunable light absorption in the quantum-dot layer creates electric charges that are transferred to the graphene, where they recirculate many times due to the high charge mobility of graphene and long trapped-charge lifetimes in the quantum-dot layer. The device, with a specific detectivity of 7 × 10(13) Jones, benefits from gate-tunable sensitivity and speed, spectral selectivity from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.


Subject(s)
Electrons , Graphite/chemistry , Photons , Quantum Dots
SELECTION OF CITATIONS
SEARCH DETAIL