Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
ACS Nano ; 15(4): 6540-6550, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33784072

ABSTRACT

Silver-based nanomaterials have been versatile building blocks of various photoassisted energy applications; however, they have demonstrated poor electrochemical catalytic performance and stability, in particular, in acidic environments. Here we report a stable and high-performance electrochemical catalyst of silver telluride (AgTe) for the hydrogen evolution reaction (HER), which was synthesized with a nanoporous structure by an electrochemical synthesis method. X-ray spectroscopy techniques on the nanometer scale and high-resolution transmission electron microscopy revealed an orthorhombic structure of nanoporous AgTe with precise lattice constants. First-principles calculations show that the AgTe surface possesses highly active catalytic sites for the HER with an optimized Gibbs free energy change of hydrogen adsorption (-0.005 eV). Our nanoporous AgTe demonstrates exceptional stability and performance for the HER, an overpotential of 27 mV, and a Tafel slope of 33 mV/dec. As a stable catalyst for hydrogen production, AgTe is comparable to platinum-based catalysts and provides a breakthrough for high-performance electrochemical catalysts.

2.
ACS Appl Mater Interfaces ; 13(2): 2437-2446, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33350809

ABSTRACT

Two-dimensional (2D) layered catalysts have been considered as a class of ideal catalysts for hydrogen evolution reaction (HER) because of their abundant active sites with almost zero Gibbs energy change for hydrogen adsorption. Despite the promising performance, the design of stable and economic electrochemical catalyst based on 2D materials remains to be resolved for industrial-scale hydrogen production. Here, we report layered platinum tellurides, mitrofanovite Pt3Te4, which serves as an efficient and stable catalyst for HER with an overpotential of 39.6 mV and a Tafel slope of 32.7 mV/dec together with a high current density exceeding 7000 mA/cm2. Pt3Te4 was synthesized as nanocrystals on a metallic molybdenum ditelluride (MoTe2) template by a rapid electrochemical method. X-ray diffraction and high-resolution transmission microscopy revealed that the Pt3Te4 nanocrystals have a unique layered structure with repeated monolayer units of PtTe and PtTe2. Theoretical calculations exhibit that Pt3Te4 with numerous edges shows near-zero Gibbs free-energy change of hydrogen adsorption, which shows the excellent HER performance as well as the extremely large exchange current density for massive hydrogen production.

SELECTION OF CITATIONS
SEARCH DETAIL