Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters








Publication year range
1.
Food Sci Anim Resour ; 44(4): 849-860, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974733

ABSTRACT

The use of natural ingredients in meat processing has recently gained considerable interest, as consumers are increasingly attracted to clean-label meat products. However, limited research has been conducted on the use of natural substitutes for synthetic phosphates in the production of clean-label meat products. Therefore, this study aimed to explore the potential of oyster shell powder as a substitute for synthetic phosphates in pork patties cured with Chinese cabbage or radish powders. Four different groups of patties were prepared using a combination of 0.3% or 0.6% oyster shell powder and 0.4% Chinese cabbage or radish powder, respectively. These were compared with a positive control group that contained added nitrite, phosphate, and ascorbate and a negative control group without these synthetic ingredients. The results showed that patties treated with oyster shell powder had lower (p<0.05) cooking loss, thickness and diameter shrinkage, and lipid oxidation than the negative control but had lower (p<0.05) residual nitrite content and curing efficiency than the positive control. However, the use of 0.6% oyster shell powder adversely affected the curing process, resulting in a decreased curing efficiency. The impact of the vegetable powder types tested in this study on the quality attributes of the cured pork patties was negligible. Consequently, this study suggests that 0.3% oyster shell powder could serve as a suitable replacement for synthetic phosphate in pork patties cured with Chinese cabbage or radish powders. Further research on the microbiological safety and sensory evaluation of clean-label patties during storage is required for practical applications.

2.
Food Sci Anim Resour ; 43(3): 502-511, 2023 May.
Article in English | MEDLINE | ID: mdl-37181224

ABSTRACT

The use of nitrite as a conventional curing agent is decreasing because of the negative consumer perception of synthetic compounds in foods. Therefore, this study was conducted to investigate the efficacy of dongchimi as an alternative to synthetic nitrite and its effect on the qualitative properties of emulsion-type sausages. Under all tested fermentation conditions, both nitrite and nitrate contents were the highest when dongchimi was fermented at 0°C for 1 wk. The fermented dongchimi was powdered and added to the sausages. Emulsion-type sausages were prepared with 0.25% (treatment 1), 0.35% (treatment 2), 0.45% (treatment 3), or 0.55% (treatment 4) dongchimi powder, with 0.01% sodium nitrite-treated (control 1) and 0.40% celery powder-treated (control 2) sausages as controls. There were not different (p>0.05) in the pH, cooking yield, CIE L*, and CIE a* between the control 1 and treatments 2, 3, and 4. CIE b* was significantly higher (p<0.05) in the control 2 and lower (p<0.05) in the control 1 than that in the other groups. Treatment 4 and control 1 had similar contents of residual nitrite, nitrosyl hemochrome, and total pigment. Additionally, treatment 4 exhibited a significantly better (p<0.05) curing efficiency than the control 1. However, naturally cured sausages showed higher (p<0.05) lipid oxidation than the control 1. This study suggests that the use of more than 0.35% dongchimi powder could replace sodium nitrite or celery powder as curing agents for emulsion-type sausages.

3.
Food Sci Anim Resour ; 43(2): 232-244, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36909851

ABSTRACT

We investigated the effects of different phosphate replacements on the quality of ground pork products cured with sodium nitrite or radish powder to determine their potential for achieving clean-label pork products. The experimental design was a 2×5 factorial design. For this purpose, the ground meat mixture was assigned into two groups, depending on nitrite source. Each group was mixed with 0.01% sodium nitrite or 0.4% radish powder together with 0.04% starter culture, and then processed depending on phosphate replacement [with or without 0.5% sodium tripolyphosphate; STPP (+), STPP (-), 0.5% oyster shell calcium (OSC), 0.5% citrus fiber (CF), or 0.5% dried plum powder (DPP)]. All samples were cooked, cooled, and stored until analysis within two days. The nitrite source had no effect on all dependent variables of ground pork products. However, in phosphate replacement treatments, the STPP (+) and OSC treatments had a higher cooking yield than the STPP (-), CF, or DPP treatments. OSC treatment was more effective for lowering total fluid separation compared to STPP (-), CF, or DPP treatments, but had a higher percentage than STPP (+). The STPP (+) treatment did not differ from the OSC or CF treatments for CIE L* and CIE a*. Moreover, no differences were observed in nitrosyl hemochrome content, lipid oxidation, hardness, gumminess, and chewiness between the OSC and STPP (+) treatments. In conclusion, among the phosphate replacements, OSC addition was the most suitable to provide clean-label pork products cured with radish powder as a synthetic nitrite replacer.

4.
Food Sci Anim Resour ; 41(6): 950-966, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34796323

ABSTRACT

This study investigated the effects of lemon extract powder and vinegar powder on the physicochemical and microbiological characteristics of pork sausages naturally cured using white kimchi powder during storage for 30 days. Six batches were included: control (0.01% sodium nitrite and 0.05% sodium ascorbate); treatment 1 (0.3% white kimchi powder and 0.5% lemon extract powder); treatment 2 (0.3% white kimchi powder and 1.0% lemon extract powder); treatment 3 (0.3% white kimchi powder and 0.5% vinegar powder); treatment 4 (0.3% white kimchi powder and 1.0% vinegar powder); and treatment 5 (0.3% white kimchi powder, 0.5% lemon extract powder, and 0.5% vinegar powder). Treatment 2 had significantly lower pH values and higher cooking loss than the other batches (p<0.05). Treatments 1, 2, and 5 had similar (p>0.05) CIE a* as the control, while treatments 3 and 4 showed significantly lower values (p<0.05). The residual nitrite content in naturally cured products was lower than the control (p<0.05), while treatments 1 and 2 showed significantly higher nitrosyl hemochrome content and curing efficiency (p<0.05). TBARS values were similar for all treatments and the control (p>0.05). Treatments 1 and 2 showed significantly reduced aerobic plate counts (APC; p<0.05) than the control and other treatments. However, across all batches, TBARS values and APC significantly increased during storage (p<0.05). Our results suggest that lemon extract powder, rather than vinegar powder, may offer a promising alternative for supplementing the functions of nitrite in naturally cured sausages.

5.
Sci Adv ; 7(47): eabk1224, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797704

ABSTRACT

Notwithstanding the success of nanolayered coatings in the reduction of wear at nano-/microscales, the improvement of the wear resistance at the macroscale remains an issue. Moreover, the effects of nanointerfaces in nanolayered coatings on their macrotribological properties are not understood well. This paper reports on the engineering of nanointerfaces in diamond-like C/Cr nanolayered coatings to tailor their characteristics including the degree of intermixing, defects, and Cr growth mode. The result was the fabrication of a coating with subnanometer-thick periodic albeit discrete Cr interlayers. This was achieved using our patented deposition technique. This coating contained less interfacial defects compared to classic nanolayered coatings with continuous nanolayers and presented record-breaking wear rates at the macroscale. Finite Element analysis was performed and micropatterning strategy was used to reduce the wear rate further. Last, we report on discovery of a dimensionless parameter that can be used to predict the wear resistance of carbon-based nanolayered coatings.

6.
Food Sci Anim Resour ; 41(5): 840-854, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34632403

ABSTRACT

The impact of green tea extract powder and rosemary extract powder, alone or in combination, on the quality characteristics of naturally cured pork sausages produced with white kimchi powder as a nitrate source was evaluated. Ground pork sausages were assigned to one of seven treatments: control (0.01% sodium nitrite and 0.05% sodium ascorbate), treatment 1 (0.3% white kimchi powder and 0.05% green tea extract powder), treatment 2 (0.3% white kimchi powder and 0.1% green tea extract powder), treatment 3 (0.3% white kimchi powder and 0.05% rosemary extract powder), treatment 4 (0.3% white kimchi powder and 0.1% rosemary extract powder), treatment 5 (0.3% white kimchi powder, 0.05% green tea extract powder, and 0.05% rosemary extract powder), and treatment 6 (0.3% celery juice powder, 0.05% green tea extract powder, and 0.05% rosemary extract powder). Naturally cured products had lower (p<0.05) cooking yield and residual nitrite content than control sausages. However, compared to the control, naturally cured products with white kimchi powder (treatments 1 to 5) showed similar the pH, oxidation-reduction potential, CIE L* values, CIE a* values, nitrosyl hemochrome content, total pigment content, and curing efficiency to the control. When the amount of green tea extract powder or rosemary extract powder was increased to 0.1% (treatments 2 and 4), lipid oxidation was reduced (p<0.05). These results indicate that green tea extract powder, rosemary extract powder, and white kimchi powder may provide an effective solution to replace synthetic nitrite and ascorbate used in traditionally cured products.

7.
Food Sci Anim Resour ; 40(6): 990-1000, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33305283

ABSTRACT

This study investigated the effects of Chinese cabbage powder as a natural replacement for sodium nitrite on the qualities of alternatively cured pork products. Chinese cabbages grown in Korea were collected and used for preparing hot air dried powder. Different levels of Chinese cabbage powder were added to pork products and evaluated by comparing these products to those with sodium nitrite or a commercially available celery juice powder. The experimental groups included control (100 ppm sodium nitrite added), treatment 1 (0.15% Chinese cabbage powder added), treatment 2 (0.25% Chinese cabbage powder added), treatment 3 (0.35% Chinese cabbage powder added), and treatment 4 (0.4% celery juice powder added). The cooking yields and pH values of treatments 1 to 3 were significantly lower (p<0.05) than the control. However, all of the alternatively cured products were redder (higher CIE a* values; p<0.05) than the control and this result was supported from higher nitrosyl hemochrome, total pigment, and curing efficiency. Furthermore, the inclusion of vegetable powders to these products resulted in considerably less residual nitrite content. However, Chinese cabbage powder (0.25% and 0.35%) was effective in producing alternatively cured meat products with a higher curing efficiency comparable to those of the traditionally cured control or the products with celery juice powder. Therefore, Chinese cabbage powder exhibited the efficacy for use as a natural replacer for alternatively cured meat products.

8.
Food Sci Anim Resour ; 40(5): 831-843, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32968733

ABSTRACT

This study investigated the potential for using vegetable powders as a natural replacement for sodium nitrite and their effects on the physicochemical characteristics of alternatively cured pork products. We analyzed pork products subjected to four treatments: control (0.015% sodium nitrite), Chinese cabbabe powder (CCP) treatment (0.4% Chinese cabbage powder), radish powder (RP) treatment (0.4% radish powder), and spinach powder (SP) treatment (0.4% spinach powder). Among the vegetable powders prepared in this study, SP had the highest (p<0.05) nitrate content, while CCP had the lowest (p<0.05). The cooking yields from these treatments were not significantly different from each other. However, the products with vegetable powders had higher (p<0.05) pH and thiobarbituric acid reactive substances values than the control. Pork products with vegetable powders also showed lower CIE L* values and higher CIE b* values than the nitrite-added control. RP treatment had similar (p>0.05) CIE a* values to the control, while SP treatment had the lowest (p<0.05) CIE a* values. The residual nitrite content was lower (p<0.05) in the vegetable powder added pork products than in the control, although nitrosyl hemochrome and total pigment contents in the CCP and RP treatments were similar (p>0.05) to those in the control. The control, CCP, and RP treatments showed curing efficiencies greater than 80%, indicating that CCP and RP would be promising potential replacements for sodium nitrite. The results of this study suggest that RP may be a suitable natural replacement for sodium nitrite to produce alternatively cured meat products, compared to other leafy vegetable powders.

9.
Food Sci Anim Resour ; 40(4): 636-648, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32734270

ABSTRACT

This study investigated the effects of the addition levels of white kimchi powder and acerola juice powder, as natural sources of sodium nitrite and sodium ascorbate, on the quality of cooked ground pork products. Freeze-dried white kimchi powder was prepared and used after fermentation for 2 wk. Six treatments were included: control (100 ppm sodium nitrite and 500 ppm sodium ascorbate), treatment 1 (0.2% white kimchi powder, 0.02 % starter culture, and 0.1% acerola juice powder), treatment 2 (0.2% white kimchi powder, 0.02% starter culture, and 0.2% acerola juice powder), treatment 3 (0.4% white kimchi powder, 0.04% starter culture, and 0.1% acerola juice powder), treatment 4 (0.4% white kimchi powder, 0.04% starter culture, and 0.2% acerola juice powder), and treatment 5 (0.4% celery powder, 0.04% starter culture, and 0.2% acerola juice powder). The pH values were decreased (p<0.05) because of lower pH of acerola juice powder, resulting in lower cooking yields (p<0.05) in these treatments. CIE L* and CIE a* values of indirectly cured meat products were not different (p>0.05) from the sodium nitrite-added control. However, indirectly cured meat products showed lower (p<0.05) residual nitrite contents, but higher (p<0.05) nitrosyl hemochrome contents and cure efficiency than the control. Treatments 2 and 4 had higher (p<0.05) total pigment contents and lipid oxidation than the control. This study indicates that white kimchi powder coupled with acerola juice powder has substantial potential to substitute synthetic nitrite to naturally cured meat products, which could be favored by consumers seeking clean label products.

10.
Food Sci Anim Resour ; 40(2): 197-208, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32161915

ABSTRACT

The effects of presalting conditions (storage temperature and duration) with/without sodium tripolyphosphate (STPP) on the color and pigment characteristics of cooked ground chicken breast were investigated. Meat mixtures containing 2% NaCl (control) or 2% NaCl and 0.5% STPP (STPP treatment) were stored for 0, 3, 5, 7, and 10 d at 2°C or 7°C, followed by cooking to 75°C, and cooling and storage at 2°C-3°C until further analysis. The treatment was the most effective on the pink color defect of all independent variables. The effect of storage temperature was only observed on CIE L* values and percentage myoglobin denaturation (PMD). The control was redder than the STPP treated samples and the CIE a* values increased (p<0.05) from 0 to 5 d in the control and STPP treated samples. Compared to the STPP treatment, the control exhibited increased reducing conditions (more negative oxidation reduction potential), lower undenatured myoglobin, and greater PMD. No differences in the cooking yields of the control and STPP-treated samples were observed for various storage durations. Products with STPP showed higher (p<0.05) pH values than those without STPP, but no differences (p>0.05) in PMD were observed over the storage period in the control and STPP treated samples, except for day 0. Thus, STPP is effective at reducing the pink color in cooked chicken breasts. In addition, presalting for longer than 5 d resulted in increased pink color of the cooked chicken breasts.

11.
Food Sci Anim Resour ; 40(2): 231-241, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32161918

ABSTRACT

The current study investigated the effects of timing of NaCl (2%) and sodium tripolyphosphate (STPP, 0.5%) addition and cooking rates on color and pigment properties of ground chicken breasts. Four treatments were tested as follows: treatment 1, no NaCl and STPP added and stored for 7 d; treatment 2, NaCl+STPP added on 0 d and stored for 7 d; treatment 3, NaCl added on 0 d and STPP added on 7 d; and treatment 4, stored for 7 d and NaCl+STPP added. All samples were cooked at a fast (5.67°C/min) or slow cooking rate (2.16°C/min). Regardless of the timing of NaCl and STPP addition, reflectance ratios of nitrosyl hemochrome, cooking yield, pH values, oxidation-reduction potential, and percent myoglobin denaturation were similar (p>0.05) across treatments 2, 3, and 4. The highest CIE a* values were observed in treatment 4 (p<0.05), while treatment 2 was effective in reducing the redness in cooked chicken products. The fast cooking rate resulted in lower CIE a* values and higher CIE L* values and cooking yield in cooked chicken breasts compared to the slow cooking rate. Our results indicate that adding NaCl and STPP to meat, followed by storing and cooking at a fast rate, may result in inhibiting the pink color defect sporadically occurred in cooked ground chicken breasts.

12.
J Anim Sci Technol ; 62(6): 922-932, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33987572

ABSTRACT

Previous research has indicated that radish powder could be a suitable replacement for chemical nitrite sources in alternatively cured meat products. However, the effects of radish powder level on the physicochemical properties of cured meat have not been systematically studied. In this study, we aimed to investigate the effects of varying concentrations of radish powder and incubation time on the physicochemical properties and cured meat pigments of alternatively cured meat products. We divided our experimental setup into seven groups with different radish powder concentrations and incubation times: control (0.01% sodium nitrite), treatment 1 (0.15% radish powder and 2 h incubation), treatment 2 (0.15% radish powder and 4 h incubation), treatment 3 (0.30% radish powder and 2 h incubation), treatment 4 (0.30% radish powder and 4 h incubation), treatment 5 (0.30% celery powder and 2 h incubation), and treatment 6 (0.30% celery powder and 4 h incubation). The cooking yield, CIE a* values (redness), and total pigment levels were not significantly different (p > 0.05) between any of the alternatively cured treatments and the control. However, when 0.30% radish powder or celery powder was added to the products, the CIE b* values increased significantly (p < 0.05) with incubation time. At the same vegetable concentration, the nitrite content, nitrosyl hemochrome, and curing efficiency also increased significantly (p < 0.05) as the incubation time increased from 2 to 4 h, regardless of the types of vegetable powder. Among the meat products cured with radish powder, treatment 4 showed the highest increase in residual nitrite content, nitrosyl hemochrome content, and curing efficiency, but showed decreased lipid oxidation. Our results suggest that increased concentrations of radish powder and longer incubation times would be more suitable for producing alternatively cured meat products comparable to traditionally cured products treated with synthetic nitrite.

13.
Korean J Food Sci Anim Resour ; 38(2): 417-430, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29805289

ABSTRACT

This study was conducted to determine the effects of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Four treatments with different salt concentrations (0%, 1%, 2%, and 3%) were prepared and stored for 7 d prior to cooking. Each sample was cooked to four endpoint temperatures (70°C, 75°C, 80°C, and 85°C). The salt concentration affected the color and pigment properties of the cooked ground chicken breasts. As the salt concentration increased, the cooking yield and residual nitrite content also increased. However, the samples with 1%, 2%, and 3% NaCl showed similar nitrosyl hemochrome and total pigment contents. Among the products containing salt, the samples with 3% NaCl showed the lowest percentage myoglobin denaturation (PMD) and the lowest CIE a* values. The cooking temperature had limited effects on the pigment properties of cooked ground chicken breasts. The oxidation-reduction potential and residual nitrite contents increased with cooking temperature, while the PMD, nitrosyl hemochrome, total pigment contents and CIE a* values were similar in the samples cooked at different temperatures. These results indicated that the addition of up to 2% salt to ground chicken breasts and storage for 7 d could cause the pink color defect of cooked products. However, the addition of 3% NaCl could reduce the redness of the cooked products.

14.
Korean J Food Sci Anim Resour ; 37(4): 571-578, 2017.
Article in English | MEDLINE | ID: mdl-28943770

ABSTRACT

This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

15.
Korean J Food Sci Anim Resour ; 37(3): 456-463, 2017.
Article in English | MEDLINE | ID: mdl-28747832

ABSTRACT

The aim of this study was to identify the optimal and superior type of natural calcium for replacing phosphate in cooked ground pork products. To achieve this, 0.5% eggshell calcium (ESC), oyster shell calcium (OSC), marine algae calcium (MAC), or milk calcium (MC) was added to ground pork meat products. The effect of this substitution was studied by comparing the substituted products with products containing 0.3% phosphate blend (control). ESC was considered an ideal phosphate replacer for minimizing the cooking loss, which likely resulted from the increase in the pH of the product. Among the other natural calcium types, OSC treatment did not cause a significant increase in pH, but it lowered the cooking loss. CIE L* values were higher (p<0.05) in products treated with OSC or MC than the control, and lowest (p<0.05) in the products with ESC. However, products with ESC had higher (p<0.05) CIE a* and CIE b* values than the control and products treated with other powders. Compared to the control, products treated with ESC and OSC had similar substitution effects on the textural properties of the products. Therefore, the results of this study suggested that the combined use of ESC and OSC could be a potentially effective method for replacing synthetic phosphate in ground pork products.

SELECTION OF CITATIONS
SEARCH DETAIL