Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Int J Antimicrob Agents ; 63(5): 107120, 2024 May.
Article in English | MEDLINE | ID: mdl-38417705

ABSTRACT

OBJECTIVES: This study aimed to appraise clinical practice guidelines (CPGs) for the treatment of carbapenem-resistant Gram-negative Bacilli (CRGNB) infections and to summarise the recommendations. METHODS: A systematic search of the literature published from January 2012 to March 2023 was undertaken to identify CPGs related to CRGNB infections treatment. The methodological and reporting quality of eligible CPGs were assessed using six domains of the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool and seven domains of the Reporting Items for practice Guidelines in HealThcare (RIGHT) checklist. Basic information and recommendations of included CPGs were extracted and compared. RESULTS: A total of 21 CPGs from 7953 relevant articles were included. The mean overall AGREE II score was 62.7%, and was highest for "clarity of presentation" (90.2%) and lowest for "stakeholder involvement" (44.8%). The overall reporting quality of all of the CPGs was suboptimal, with the proportion of eligible items ranging from 45.7 to 85.7%. The treatment of CRGNB infections is related to the type of pathogen, the sensitivity of antimicrobial agents, and the site of infection. In general, the recommended options mainly included novel ß-lactam/ ß-lactamase inhibitors, cefiderocol, ampicillin-sulbactam (mainly for carbapenem-resistant Acinetobacter baumannii [CRAB]), and combination therapy, involving polymyxin B/colistin, tigecycline (except for carbapenem-resistant Pseudomonas aeruginosa), aminoglycosides, carbapenems, fosfomycin, and sulbactam (mainly for CRAB). CONCLUSIONS: The methodological and reporting quality of CPGs for the treatment of CRGNB infections are generally suboptimal and need further improvement. Both monotherapy with novel drugs and combination therapy play important roles in the treatment.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Practice Guidelines as Topic , Humans , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Cefiderocol , Fosfomycin/therapeutic use , Fosfomycin/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Microbial Sensitivity Tests/standards , Sulbactam/therapeutic use , Sulbactam/pharmacology , Tigecycline/therapeutic use , Tigecycline/pharmacology
2.
RSC Adv ; 13(49): 34884-34890, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38035241

ABSTRACT

Residual antibiotics in nature are an important cause of antimicrobial drug resistance, and how to deal with residual ß-lactam antibiotics in aqueous environments has become an urgent issue. In this work, magnetic zeolitic imidazolate frameworks-8 (ZIF-8) for immobilizing metallo-ß-lactamases (MBLs), or Fe3O4@ZIF-8@MBLs, were successfully synthesized using the one-pot method in aqueous solution. The morphology and chemical structure of Fe3O4@ZIF-8@MBLs were characterized by scanning electron microscopy, energy dispersive spectra, X-ray diffraction, infrared spectra, physical adsorption, and zeta potential. Further, the degradation performance of Fe3O4@ZIF-8@MBLs for ß-lactam antibiotics (penicillin G, cefoperazone, meropenem) in an aqueous environment was investigated by UV-visible absorption spectrophotometry. The results indicated that Fe3O4@ZIF-8@MBLs, compared to control ZIF-8, exhibited superior degradation ability, excellent reusability, and better stability under several harsh conditions. The strategy of combining ZIF-8 and MBLs to form magnetic porous polymers may be suitable for removing ß-lactam antibiotics from an aqueous environment. This work provided an original insight into future studies on the degradation of ß-lactam antibiotics employing MBLs immobilized by magnetic metal-organic frameworks.

SELECTION OF CITATIONS
SEARCH DETAIL