Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894413

ABSTRACT

The Haiyuan fault system plays a crucial role in accommodating the eastward expansion of the Tibetan Plateau (TP) and is currently slipping at a rate of several centimeters per year. However, limited seismic activities have been observed using geodetic techniques in this area, impeding the comprehensive investigation into regional tectonics. In this study, the geometric structure and source models of the 2022 Mw 6.7 and the 2016 Mw 5.9 Menyuan earthquakes were investigated using Sentinel-1A SAR images. By implementing an atmospheric error correction method, the signal-to-noise ratio of the 2016 interferometric synthetic aperture radar (InSAR) coseismic deformation field was significantly improved, enabling InSAR observations with higher accuracy. The results showed that the reliability of the source models for those events was improved following the reduction in observation errors. The Coulomb stress resulting from the 2016 event may have promoted the strike-slip movement of the western segment of the Lenglongling fault zone, potentially expediting the occurrence of the 2022 earthquake. The coseismic slip distribution and the spatial distribution of aftershocks of the 2022 event suggested that the seismogenic fault may connect the western segment of the Lenglongling fault (LLLF) and the eastern segment of the Tuolaishan fault (TLSF). Additionally, the western segment of the surface rupture zone of the northern branch may terminate in the secondary branch close to the Sunan-Qilian fault (SN-QL) strike direction, and the earthquake may have triggered deep aftershocks and accelerated stress release within the deep seismogenic fault.

2.
Environ Monit Assess ; 195(1): 131, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36409374

ABSTRACT

The middle and lower reaches of Hanjiang River Basin (MLHB), areas that have an important ecological function in China, have experienced great changes in the vegetation ecosystem driven by natural environmental change and human activity. Here, we explored the spatio-temporal dynamics of fractional vegetation coverage (FVC) and quantitatively analyzed its driving factors to advance current understanding of how the ecological environment has changed. Specifically, we used the dimidiate pixel model to calculate the FVC of the MLHB from 2001 to 2018 based on Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data. We then used Theil-Sen median slope (Sen's slope) and coefficient of variation (CV) to explore spatial and temporal variations, as well as characteristics in fluctuations. Finally, we utilized a geographical detector model (with spatial scale effects and spatial data discretization tests) to quantify the influence of the detected natural and human factors. Results showed that average annual FVC was 0.30-0.75 for ~90% of the study area over the 19-year study period with a heterogeneous spatial distribution. FVC variation trend displayed stability and improvement. Areas with higher FVC displayed greater stability. All 10 detected natural and anthropogenic factors were responsible for changes in FVC. The primary factors causing FVC to change were precipitation (in 2001) and slope (in 2018), followed by landform type, distance to water, and nighttime light (NTL) (in 2018). Precipitation and slope consistently displayed the largest interaction across all years. The interaction between human and topographical factors had gradually increasing significance on changes in FVC over the research period. The range and type of factors suitable for promoting vegetation growth were detected in the study area. Results of this study can provide a scientific basis for developing effective strategies for local vegetation protection, restoration, and land resource management.


Subject(s)
Ecosystem , Rivers , Humans , Environmental Monitoring/methods , Satellite Imagery , China
SELECTION OF CITATIONS
SEARCH DETAIL