Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Am J Hum Genet ; 111(8): 1643-1655, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39089258

ABSTRACT

The term "recurrent constellations of embryonic malformations" (RCEM) is used to describe a number of multiple malformation associations that affect three or more body structures. The causes of these disorders are currently unknown, and no diagnostic marker has been identified. Consequently, providing a definitive diagnosis in suspected individuals is challenging. In this study, genome-wide DNA methylation analysis was conducted on DNA samples obtained from the peripheral blood of 53 individuals with RCEM characterized by clinical features recognized as VACTERL and/or oculoauriculovertebral spectrum association. We identified a common DNA methylation episignature in 40 out of the 53 individuals. Subsequently, a sensitive and specific binary classifier was developed based on the DNA methylation episignature. This classifier can facilitate the use of RCEM episignature as a diagnostic biomarker in a clinical setting. The study also investigated the functional correlation of RCEM DNA methylation relative to other genetic disorders with known episignatures, highlighting the common genomic regulatory pathways involved in the pathophysiology of RCEM.


Subject(s)
DNA Methylation , Humans , Female , Male , Abnormalities, Multiple/genetics , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/diagnosis
2.
Genes (Basel) ; 15(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39062615

ABSTRACT

Introduction: The NPRL3 gene is a critical component of the GATOR1 complex, which negatively regulates the mTORC1 pathway, essential for neurogenesis and brain development. Located on chromosome 16p13.3, NPRL3 is situated near the α-globin gene cluster. Haploinsufficiency of NPRL3, either by deletion or a pathogenic variant, is associated with a variable phenotype of focal epilepsy, with or without malformations of cortical development, with known decreased penetrance. Case Description: This work details the diagnostic odyssey of a neurotypical 10-year-old boy who presented at age 2 with unusual nocturnal episodes and a history of microcytic anemia, as well as a review of the existing literature on NPRL3-related epilepsy, with an emphasis on individuals with deletions who also present with α-thalassemia trait. The proband's episodes were mistaken for gastroesophageal reflux disease for several years. He had molecular testing for his α-thalassemia trait and was noted to carry a deletion encompassing the regulatory region of the α-thalassemia gene cluster. Following the onset of overt focal motor seizures, genetic testing revealed a heterozygous loss of NPRL3, within a 106 kb microdeletion on chromosome 16p13.3, inherited from his mother. This deletion encompassed the entire NPRL3 gene, which overlaps the regulatory region of the α-globin gene cluster, giving him the dual diagnosis of NPRL3-related epilepsy and α-thalassemia trait. Brain imaging postprocessing showed left hippocampal sclerosis and mid-posterior para-hippocampal focal cortical dysplasia, leading to the consideration of epilepsy surgery. Conclusions: This case underscores the necessity of early and comprehensive genetic assessments in children with epilepsy accompanied by systemic features, even in the absence of a family history of epilepsy or a developmental delay. Recognizing phenotypic overlaps is crucial to avoid diagnostic delays. Our findings also highlight the impact of disruptions in regulatory regions in genetic disorders: any individual with full gene deletion of NPRL3 would have, at a minimum, α-thalassemia trait, due to the presence of the major regulatory element of α-globin genes overlapping the gene's introns.


Subject(s)
alpha-Thalassemia , Humans , Male , alpha-Thalassemia/genetics , alpha-Thalassemia/diagnosis , Child , Epilepsy/genetics , Epilepsy/diagnosis , Epilepsy/pathology , Epilepsies, Partial/genetics , Epilepsies, Partial/diagnosis , Phenotype , Chromosomes, Human, Pair 16/genetics , Haploinsufficiency/genetics , GTPase-Activating Proteins
3.
Genet Med ; 26(2): 101012, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37924259

ABSTRACT

PURPOSE: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases. METHODS: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests. RESULTS: Laboratories reported 105 molecular diagnoses and 165 uncertain results in known and novel genes. Of these, clinicians interpreted 102 of 105 (97%) molecular diagnoses and 6 of 165 (4%) uncertain results as clinical-molecular diagnoses. The 108 clinical-molecular diagnoses were in 104 families (35% diagnostic yield). Each eligibility criteria resulted in diagnostic yields of 30% to 40%, and higher yields were achieved when >2 eligibility criteria were met (up to 45%). Hypothetical tests would have identified 61% of clinical-molecular diagnoses. CONCLUSION: We demonstrate robustness in eligibility criteria and high clinical validity of laboratory results from ES testing. The importance of ES was highlighted by the potential 40% of patients that would have gone undiagnosed without this test.


Subject(s)
Exome , Rare Diseases , Humans , Prospective Studies , Exome Sequencing , Rare Diseases/diagnosis , Rare Diseases/genetics , Genetic Testing/methods , Ontario
4.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37962958

ABSTRACT

Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.


Subject(s)
Neurodevelopmental Disorders , Spliceosomes , Humans , Spliceosomes/genetics , Gene Regulatory Networks , Neurodevelopmental Disorders/genetics , Mutation, Missense , RNA Splicing , RNA Splicing Factors/genetics , Nuclear Proteins/genetics , DNA Repair Enzymes/genetics
5.
Eur J Hum Genet ; 31(8): 905-917, 2023 08.
Article in English | MEDLINE | ID: mdl-37188825

ABSTRACT

FINCA syndrome [MIM: 618278] is an autosomal recessive multisystem disorder characterized by fibrosis, neurodegeneration and cerebral angiomatosis. To date, 13 patients from nine families with biallelic NHLRC2 variants have been published. In all of them, the recurrent missense variant p.(Asp148Tyr) was detected on at least one allele. Common manifestations included lung or muscle fibrosis, respiratory distress, developmental delay, neuromuscular symptoms and seizures often followed by early death due to rapid disease progression.Here, we present 15 individuals from 12 families with an overlapping phenotype associated with nine novel NHLRC2 variants identified by exome analysis. All patients described here presented with moderate to severe global developmental delay and variable disease progression. Seizures, truncal hypotonia and movement disorders were frequently observed. Notably, we also present the first eight cases in which the recurrent p.(Asp148Tyr) variant was not detected in either homozygous or compound heterozygous state.We cloned and expressed all novel and most previously published non-truncating variants in HEK293-cells. From the results of these functional studies, we propose a potential genotype-phenotype correlation, with a greater reduction in protein expression being associated with a more severe phenotype.Taken together, our findings broaden the known phenotypic and molecular spectrum and emphasize that NHLRC2-related disease should be considered in patients presenting with intellectual disability, movement disorders, neuroregression and epilepsy with or without pulmonary involvement.


Subject(s)
Intellectual Disability , Movement Disorders , Humans , Disease Progression , Fibrosis , HEK293 Cells , Intellectual Disability/genetics , Phenotype , Seizures/genetics , Syndrome
6.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Article in English | MEDLINE | ID: mdl-37183572

ABSTRACT

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Adult , Child , Female , Humans , Infant , Male , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Phenotype , Protein Phosphatase 2C/genetics , Retrospective Studies , Vomiting , Child, Preschool , Adolescent , Young Adult , Middle Aged
7.
Clin Genet ; 103(3): 288-300, 2023 03.
Article in English | MEDLINE | ID: mdl-36353900

ABSTRACT

We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses.


Subject(s)
Genetic Testing , Humans , Genetic Testing/methods , Ontario/epidemiology , Exome Sequencing
9.
Am J Med Genet A ; 185(9): 2829-2845, 2021 09.
Article in English | MEDLINE | ID: mdl-34056834

ABSTRACT

Mosaic KRAS variants and other RASopathy genes cause oculoectodermal, encephalo-cranio-cutaneous lipomatosis, and Schimmelpenning-Feuerstein-Mims syndromes, and a spectrum of vascular malformations, overgrowth and other associated anomalies, the latter of which are only recently being characterized. We describe eight individuals in total (six unreported cases and two previously reported cases) with somatic KRAS variants and variably associated features. Given the findings of somatic overgrowth (in seven individuals) and vascular or lymphatic malformations (in eight individuals), we suggest mosaic RASopathies (mosaic KRAS variants) be considered in the differential diagnosis for individuals presenting with asymmetric overgrowth and lymphatic or vascular anomalies. We expand the association with embryonal tumors, including the third report of embryonal rhabdomyosarcoma, as well as novel findings of Wilms tumor and nephroblastomatosis in two individuals. Rare or novel findings in our series include the presence of epilepsy, polycystic kidneys, and T-cell deficiency in one individual, and multifocal lytic bone lesions in two individuals. Finally, we describe the first use of targeted therapy with a MEK inhibitor for an individual with a mosaic KRAS variant. The purposes of this report are to expand the phenotypic spectrum of mosaic KRAS-related disorders, and to propose possible mechanisms of pathogenesis, and surveillance of its associated findings.


Subject(s)
Abnormalities, Multiple/pathology , Kidney Neoplasms/pathology , Mosaicism , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Vascular Malformations/pathology , Wilms Tumor/pathology , Abnormalities, Multiple/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Kidney Neoplasms/genetics , Male , Phenotype , Vascular Malformations/genetics , Wilms Tumor/genetics
10.
Genet Med ; 23(7): 1234-1245, 2021 07.
Article in English | MEDLINE | ID: mdl-33824499

ABSTRACT

PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.


Subject(s)
Haploinsufficiency , Intellectual Disability , Animals , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Mice , Muscle Hypotonia , Mutation, Missense , Phenotype
11.
Genet Med ; 23(6): 1065-1074, 2021 06.
Article in English | MEDLINE | ID: mdl-33547396

ABSTRACT

PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested.


Subject(s)
DNA Methylation , Epigenomics , Canada , Europe , Humans , Syndrome
13.
Can J Neurol Sci ; 48(2): 233-244, 2021 03.
Article in English | MEDLINE | ID: mdl-32741404

ABSTRACT

BACKGROUND: Retrospective observational study to determine diagnostic yield and utility of genetic testing in children with epilepsy attending the Epilepsy Clinic at Children's Hospital, London, Ontario, Canada. METHODS: Children (birth-18 years) with epilepsy, who were seen in a 10-year period (January 1, 2008-March 31, 2018), were selected using defined inclusion criteria and by combining clinic datasets and laboratory records. RESULTS: In total, 105 children (52.38% male and 47.61% female) with a variety of seizures were included in the analysis. Developmental delay was documented in the majority (83; 79.04%). Overall, a genetic diagnosis was established in 24 (22.85%) children. The diagnostic yield was highest for whole-exome sequencing (WES), at 35.71%. The yield from microarray was 8.33%. Yields of single-gene testing (18.60%) and targeted multigene panel testing (19.23%) were very similar. Several likely pathogenic and pathogenic variants not previously reported were identified and categorized using ACMG criteria. All diagnosed patients underwent a review of anti-seizure medication management and received counseling on natural history of their disease, possible complications, recurrence risks, and possibilities of preimplantation or prenatal genetic diagnosis. CONCLUSIONS: Our study confirms the multiple benefits of detecting a genetic etiology in children with epilepsy. Similar yields in single versus multigene testing underscore the importance of accurate clinical phenotyping. Patients with epilepsy and their caregivers in Ontario would undoubtedly benefit from repatriation of multigene panels and WES to the province.


Subject(s)
Epilepsy , Genetic Testing , Child , Epilepsy/diagnosis , Epilepsy/genetics , Female , Humans , Male , Observational Studies as Topic , Ontario/epidemiology , Retrospective Studies , Exome Sequencing
14.
Genet Med ; 22(8): 1427, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32555415

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Genet Med ; 22(8): 1391-1400, 2020 08.
Article in English | MEDLINE | ID: mdl-32366968

ABSTRACT

PURPOSE: Computational documentation of genetic disorders is highly reliant on structured data for differential diagnosis, pathogenic variant identification, and patient matchmaking. However, most information on rare diseases (RDs) exists in freeform text, such as academic literature. To increase availability of structured RD data, we developed a crowdsourcing approach for collecting phenotype information using student assignments. METHODS: We developed Phenotate, a web application for crowdsourcing disease phenotype annotations through assignments for undergraduate genetics students. Using student-collected data, we generated composite annotations for each disease through a machine learning approach. These annotations were compared with those from clinical practitioners and gold standard curated data. RESULTS: Deploying Phenotate in five undergraduate genetics courses, we collected annotations for 22 diseases. Student-sourced annotations showed strong similarity to gold standards, with F-measures ranging from 0.584 to 0.868. Furthermore, clinicians used Phenotate annotations to identify diseases with comparable accuracy to other annotation sources and gold standards. For six disorders, no gold standards were available, allowing us to create some of the first structured annotations for them, while students demonstrated ability to research RDs. CONCLUSION: Phenotate enables crowdsourcing RD phenotypic annotations through educational assignments. Presented as an intuitive web-based tool, it offers pedagogical benefits and augments the computable RD knowledgebase.


Subject(s)
Crowdsourcing , Humans , Knowledge Bases , Machine Learning , Phenotype , Students
16.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109418

ABSTRACT

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Subject(s)
DNA Methylation , Neurodevelopmental Disorders/genetics , Phenotype , Cohort Studies , Genetic Heterogeneity , Humans , Syndrome
17.
Am J Med Genet A ; 182(4): 673-680, 2020 04.
Article in English | MEDLINE | ID: mdl-31961069

ABSTRACT

Tatton-Brown Rahman syndrome (TBRS) is an overgrowth-intellectual disability syndrome caused by heterozygous variants in DNMT3A. Seventy-eight individuals have been reported with a consistent phenotype of somatic overgrowth, mild to moderate intellectual disability, and similar dysmorphisms. We present six individuals with TBRS, including the youngest individual thus far reported, first individual to be diagnosed with tumor testing and two individuals with variants at the Arg882 domain, bringing the total number of reported cases to 82. Patients reported herein have additional clinical features not previously reported in TBRS. One patient had congenital diaphragmatic hernia. One patient carrying the recurrent p.Arg882His DNMT3A variant, who was previously reported as having a phenotype due to a truncating variant in the CLTC gene, developed a ganglioneuroblastoma at 18 months and T-cell lymphoblastic lymphoma at 6 years of age. Four patients manifested symptoms suggestive of autonomic dysfunction, including central sleep apnea, postural orthostatic hypotension, and episodic vasomotor instability in the extremities. We discuss the molecular and clinical findings in our patients with TBRS in context of existing literature.


Subject(s)
Abnormalities, Multiple/pathology , DNA (Cytosine-5-)-Methyltransferases/genetics , Growth Disorders/pathology , Intellectual Disability/pathology , Mutation , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Clathrin Heavy Chains/genetics , DNA Methyltransferase 3A , Female , Growth Disorders/genetics , Humans , Infant , Intellectual Disability/genetics , Male , Phenotype , Syndrome , Young Adult
18.
Am J Med Genet C Semin Med Genet ; 178(4): 458-463, 2018 12.
Article in English | MEDLINE | ID: mdl-30580481

ABSTRACT

For years, the genetics community has estimated the number of individual rare genetic diseases to be approximately 6,000-8,000. A commonly quoted derivation of this estimate is based on the simple addition of the number of phenotypic entries with and without confirmed molecular etiologies in the Online Mendelian Inheritance in Man (OMIM®). Here, we examine the validity of this estimation by mining the phenotypic entries in OMIM that are of likely or suspected Mendelian inheritance without a molecular cause (MIM number prefix "%" or "null"). Of the 3,204 unsolved phenotypic entries in OMIM, only two-thirds (2,034 entries) represented rare diseases. Of these, 8% were considered "well-established" based on their description in commonly used reference textbooks. We hypothesize based on the large proportion of entries that represent single families reported prior to 2011, that a number of the unsolved entries represent pathogenic variants in known genes. The novel gene discovery potential of these entries is therefore likely lower than originally thought. Given that the majority of the ~300 new disease-gene associations curated each year by OMIM were never associated with a "%" or "null" sign, the true scope of the rare disease atlas is likely much larger than previously anticipated.


Subject(s)
Databases, Genetic , Genetic Diseases, Inborn/genetics , Rare Diseases/genetics , Rare Diseases/physiopathology , Humans , Phenotype
19.
Hum Mutat ; 39(5): 666-675, 2018 05.
Article in English | MEDLINE | ID: mdl-29330883

ABSTRACT

Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype-phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.


Subject(s)
Carrier Proteins/genetics , Genetic Association Studies , Mutation/genetics , Adolescent , Child, Preschool , Fatal Outcome , Female , Humans , Infant , Male , Young Adult
20.
Am J Med Genet B Neuropsychiatr Genet ; 177(1): 101-109, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29152901

ABSTRACT

White matter lesions have been described in patients with PTEN hamartoma tumor syndrome (PHTS). How these lesions correlate with the neurocognitive features associated with PTEN mutations, such as autism spectrum disorder (ASD) or developmental delay, has not been well established. We report nine patients with PTEN mutations and white matter changes on brain magnetic resonance imaging (MRI), eight of whom were referred for reasons other than developmental delay or ASD. Their clinical presentations ranged from asymptomatic macrocephaly with normal development/intellect, to obsessive compulsive disorder, and debilitating neurological disease. To our knowledge, this report constitutes the first detailed description of PTEN-related white matter changes in adult patients and in children with normal development and intelligence. We present a detailed assessment of the neuropsychological phenotype of our patients and discuss the relationship between the wide array of neuropsychiatric features and observed white matter findings in the context of these individuals.


Subject(s)
Hamartoma Syndrome, Multiple/physiopathology , Leukoencephalopathies/metabolism , PTEN Phosphohydrolase/metabolism , Adolescent , Adult , Autism Spectrum Disorder/genetics , Child , Child, Preschool , Developmental Disabilities , Female , Hamartoma Syndrome, Multiple/genetics , Humans , Intelligence , Leukoencephalopathies/genetics , Magnetic Resonance Imaging , Male , Middle Aged , Phenotype , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL