Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Hematol Oncol ; 10(1): 80, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28359287

ABSTRACT

BACKGROUND: Pharmacological inhibition of B cell receptor (BCR) signaling has recently emerged as an effective approach in a wide range of B lymphoid neoplasms. However, despite promising clinical activity of the first Bruton's kinase (Btk) and spleen tyrosine kinase (Syk) inhibitors, a small fraction of patients tend to develop progressive disease after initial response to these agents. METHODS: We evaluated the antitumor activity of IQS019, a new BCR kinase inhibitor with increased affinity for Btk, Syk, and Lck/Yes novel tyrosine kinase (Lyn), in a set of 34 B lymphoid cell lines and primary cultures, including samples with acquired resistance to the first-in-class Btk inhibitor ibrutinib. Safety and efficacy of the compound were then evaluated in two xenograft mouse models of B cell lymphoma. RESULTS: IQS019 simultaneously engaged a rapid and dose-dependent de-phosphorylation of both constitutive and IgM-activated Syk, Lyn, and Btk, leading to impaired cell proliferation, reduced CXCL12-dependent cell migration, and induction of caspase-dependent apoptosis. Accordingly, B cell lymphoma-bearing mice receiving IQS019 presented a reduced tumor outgrowth characterized by a decreased mitotic index and a lower infiltration of malignant cells in the spleen, in tight correlation with downregulation of phospho-Syk, phospho-Lyn, and phospho-Btk. More interestingly, IQS019 showed improved efficacy in vitro and in vivo when compared to the first-in-class Btk inhibitor ibrutinib, and was active in cells with acquired resistance to this latest. CONCLUSIONS: These results define IQS019 as a potential drug candidate for a variety of B lymphoid neoplasms, including cases with acquired resistance to current BCR-targeting therapies.


Subject(s)
Lymphoma, B-Cell/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcr/antagonists & inhibitors , Pyridones/pharmacology , Pyrimidines/pharmacology , Animals , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , Drug Resistance, Neoplasm/drug effects , Heterografts , Humans , Mice , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridones/therapeutic use , Pyrimidines/therapeutic use
3.
Leukemia ; 28(10): 2049-59, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24721791

ABSTRACT

Bortezomib therapy has shown promising clinical activity in mantle cell lymphoma (MCL), but the development of resistance to proteasome inhibition may limit its efficacy. To unravel the factors involved in the acquisition of bortezomib resistance in vivo, immunodeficient mice were engrafted with a set of MCL cell lines with different levels of sensitivity to the drug, followed by gene expression profiling of the tumors and functional validation of the identified gene signatures. We observed an increased tumorigenicity of bortezomib-resistant MCL cells in vivo, which was associated with plasmacytic differentiation features, like interferon regulatory factor 4 (IRF4) and Blimp-1 upregulation. Lenalidomide was particularly active in this subgroup of tumors, targeting IRF4 expression and plasmacytic differentiation program, thus overcoming bortezomib resistance. Moreover, repression of the IRF4 target gene MYC in bortezomib-resistant cells by gene knockdown or treatment with CPI203, a BET (bromodomain and extra terminal) bromodomain inhibitor, synergistically induced cell death when combined with lenalidomide. In mice, addition of CPI203 to lenalidomide therapy further decreased tumor burden, involving simultaneous MYC and IRF4 downregulation and apoptosis induction. Together, these results suggest that exacerbated IRF4/MYC signaling is associated to bortezomib resistance in MCL in vivo and warrant clinical evaluation of lenalidomide plus BET inhibitor combination in MCL cases refractory to proteasome inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Lymphoma, Mantle-Cell/drug therapy , Pyrazines/pharmacology , Thalidomide/analogs & derivatives , Animals , Antineoplastic Agents/therapeutic use , Boronic Acids/therapeutic use , Bortezomib , Cell Differentiation , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Synergism , Gene Expression Profiling , Humans , Interferon Regulatory Factors/metabolism , Lenalidomide , Mice , Mice, SCID , Neoplasm Transplantation , Proteasome Inhibitors/pharmacology , Protein Structure, Tertiary , Proto-Oncogene Proteins c-myc/metabolism , Pyrazines/therapeutic use , Signal Transduction , Thalidomide/pharmacology , Thalidomide/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL