Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Med ; 28(3): 468-471, 2022 03.
Article in English | MEDLINE | ID: mdl-35256801

ABSTRACT

The terrorist attacks on the World Trade Center (WTC) created an unprecedented environmental exposure to aerosolized dust, gases and potential carcinogens. Clonal hematopoiesis (CH) is defined as the acquisition of somatic mutations in blood cells and is associated with smoking and exposure to genotoxic stimuli. Here we show that deep targeted sequencing of blood samples identified a significantly higher proportion of WTC-exposed first responders with CH (10%; 48 out of 481) when compared with non-WTC-exposed firefighters (6.7%; 17 out of 255; odds ratio, 3.14; 95% confidence interval, 1.64-6.03; P = 0.0006) after controlling for age, sex and race/ethnicity. The frequency of somatic mutations in WTC-exposed first responders showed an age-related increase and predominantly affected DNMT3A, TET2 and other CH-associated genes. Exposure of lymphoblastoid cells to WTC particulate matter led to dysregulation of DNA replication at common fragile sites in vitro. Moreover, mice treated with WTC particulate matter developed an increased burden of mutations in hematopoietic stem and progenitor cell compartments. In summary, the high burden of CH in WTC-exposed first responders provides a rationale for enhanced screening and preventative efforts in this population.


Subject(s)
Disasters , Emergency Responders , September 11 Terrorist Attacks , Animals , Clonal Hematopoiesis , Dust , Humans , Mice
2.
Elife ; 82019 11 01.
Article in English | MEDLINE | ID: mdl-31663852

ABSTRACT

Even though pancreatic ductal adenocarcinoma (PDAC) is associated with fibrotic stroma, the molecular pathways regulating the formation of cancer associated fibroblasts (CAFs) are not well elucidated. An epigenomic analysis of patient-derived and de-novo generated CAFs demonstrated widespread loss of cytosine methylation that was associated with overexpression of various inflammatory transcripts including CXCR4. Co-culture of neoplastic cells with CAFs led to increased invasiveness that was abrogated by inhibition of CXCR4. Metabolite tracing revealed that lactate produced by neoplastic cells leads to increased production of alpha-ketoglutarate (aKG) within mesenchymal stem cells (MSCs). In turn, aKG mediated activation of the demethylase TET enzyme led to decreased cytosine methylation and increased hydroxymethylation during de novo differentiation of MSCs to CAF. Co-injection of neoplastic cells with TET-deficient MSCs inhibited tumor growth in vivo. Thus, in PDAC, a tumor-mediated lactate flux is associated with widespread epigenomic reprogramming that is seen during CAF formation.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Cellular Reprogramming/drug effects , Epigenesis, Genetic/drug effects , Lactic Acid/pharmacology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cellular Reprogramming/genetics , DNA Methylation/drug effects , Humans , Ketoglutaric Acids/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Neoplasm Invasiveness , Receptors, CXCR4/metabolism , Stromal Cells/drug effects , Stromal Cells/metabolism , Transcriptome/genetics , Pancreatic Neoplasms
3.
Leuk Lymphoma ; 60(13): 3132-3137, 2019 12.
Article in English | MEDLINE | ID: mdl-31288594

ABSTRACT

The MLL3 gene has been shown to be recurrently mutated in many malignancies including in families with acute myeloid leukemia. We demonstrate that many MLL3 variant calls made by exome sequencing are false positives due to misalignment to homologous regions, including a region on chr21, and can only be validated by long-range PCR. Numerous other recurrently mutated genes reported in COSMIC and TCGA databases have pseudogenes and cannot also be validated by conventional short read-based sequencing approaches. Genome-wide identification of pseudogene regions demonstrates that frequency of these homologous regions is increased with sequencing read lengths below 200 bps. To enable identification of poor quality sequencing variants in prospective studies, we generated novel genome-wide maps of regions with poor mappability that can be used in variant calling algorithms. Taken together, our findings reveal that pseudogene regions are a source of false-positive mutations in cancers.


Subject(s)
DNA Mutational Analysis/statistics & numerical data , DNA-Binding Proteins/genetics , Databases, Genetic/statistics & numerical data , Leukemia, Myeloid, Acute/genetics , Sequence Homology, Nucleic Acid , Algorithms , Chromosome Mapping/methods , Exons/genetics , False Positive Reactions , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/diagnosis , Pseudogenes/genetics , Exome Sequencing/statistics & numerical data
4.
J Clin Invest ; 128(12): 5479-5488, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30252677

ABSTRACT

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Transcriptomic analysis of stem and progenitor populations in MDS and AML demonstrated overexpression of STAT3 that was validated in an independent cohort. STAT3 overexpression was predictive of a shorter survival and worse clinical features in a large MDS cohort. High STAT3 expression signature in MDS CD34+ cells was similar to known preleukemic gene signatures. Functionally, STAT3 inhibition by a clinical, antisense oligonucleotide, AZD9150, led to reduced viability and increased apoptosis in leukemic cell lines. AZD9150 was rapidly incorporated by primary MDS/AML stem and progenitor cells and led to increased hematopoietic differentiation. STAT3 knockdown also impaired leukemic growth in vivo and led to decreased expression of MCL1 and other oncogenic genes in malignant cells. These studies demonstrate that STAT3 is an adverse prognostic factor in MDS/AML and provide a preclinical rationale for studies using AZD9150 in these diseases.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Neoplasm Proteins , Neoplastic Stem Cells , Oligonucleotides/pharmacology , STAT3 Transcription Factor , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays
5.
Blood ; 132(14): 1507-1518, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30104217

ABSTRACT

Adult T-cell leukemia lymphoma (ATLL) is a rare T cell neoplasm that is endemic in Japanese, Caribbean, and Latin American populations. Most North American ATLL patients are of Caribbean descent and are characterized by high rates of chemo-refractory disease and worse prognosis compared with Japanese ATLL. To determine genomic differences between these 2 cohorts, we performed targeted exon sequencing on 30 North American ATLL patients and compared the results with the Japanese ATLL cases. Although the frequency of TP53 mutations was comparable, the mutation frequency in epigenetic and histone modifying genes (57%) was significantly higher, whereas the mutation frequency in JAK/STAT and T-cell receptor/NF-κB pathway genes was significantly lower. The most common type of epigenetic mutation is that affecting EP300 (20%). As a category, epigenetic mutations were associated with adverse prognosis. Dissimilarities with the Japanese cases were also revealed by RNA sequencing analysis of 9 primary patient samples. ATLL samples with a mutated EP300 gene have decreased total and acetyl p53 protein and a transcriptional signature reminiscent of p53-mutated cancers. Most importantly, decitabine has highly selective single-agent activity in the EP300-mutated ATLL samples, suggesting that decitabine treatment induces a synthetic lethal phenotype in EP300-mutated ATLL cells. In conclusion, we demonstrate that North American ATLL has a distinct genomic landscape that is characterized by frequent epigenetic mutations that are targetable preclinically with DNA methyltransferase inhibitors.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Decitabine/therapeutic use , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Leukemia-Lymphoma, Adult T-Cell/genetics , Adult , Aged , Aged, 80 and over , Apoptosis/drug effects , E1A-Associated p300 Protein/genetics , Epigenesis, Genetic , Female , Humans , Japan/epidemiology , Leukemia-Lymphoma, Adult T-Cell/diagnosis , Leukemia-Lymphoma, Adult T-Cell/epidemiology , Male , Middle Aged , Mutation Rate , Prognosis , Transcriptome , Tumor Suppressor Protein p53/genetics , United States/epidemiology
6.
JCI Insight ; 3(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-30046005

ABSTRACT

Resistance to current therapies still impacts a significant number of melanoma patients and can be regulated by epigenetic alterations. Analysis of global cytosine methylation in a cohort of primary melanomas revealed a pattern of early demethylation associated with overexpression of oncogenic transcripts. Loss of methylation and associated overexpression of the CSF 1 receptor (CSF1R) was seen in a majority of tumors and was driven by an alternative, endogenous viral promoter in a subset of samples. CSF1R was particularly elevated in melanomas with BRAF and other MAPK activating mutations. Furthermore, rebound ERK activation after BRAF inhibition was associated with RUNX1-mediated further upregulation of CSF-1R and its ligand IL-34. Importantly, increased CSF-1R and IL-34 overexpression were detected in an independent cohort of resistant melanomas. Inhibition of CSF-1R kinase or decreased CSF-1R expression by RNAi reduced 3-D growth and invasiveness of melanoma cells. Coinhibition of CSF-1R and BRAF resulted in synergistic efficacy in vivo. To our knowledge, our data unveil a previously unknown role for the autocrine-regulated CSF-1R in BRAF V600E resistance and provide a preclinical rationale for targeting this pathway in melanoma.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Interleukins/metabolism , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , DNA Methylation , Drug Synergism , Female , Humans , MAP Kinase Signaling System , Melanoma/genetics , Melanoma/pathology , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/drug effects , Mutation , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , THP-1 Cells , Transplantation, Heterologous , U937 Cells
7.
Anticancer Res ; 38(4): 2201-2205, 2018 04.
Article in English | MEDLINE | ID: mdl-29599340

ABSTRACT

BACKGROUND: Sweet's syndrome (SS) is a febrile neutrophilic dermatosis that has been clinically linked to hematological malignancies, particularly myelodysplastic syndrome (MDS), in a number of case series. Many epigenetic changes underlying MDS have been identified, such as a mutation in the isocitrate dehydrogenase 1 (IDH1) gene, which causes DNA hypermethylation and alteration of a number of genes that lead to leukemogenesis. However, the pathogenesis of malignancy-associated SS is unknown. CASE REPORT: We present two patients who were diagnosed with SS and concomitant IDH1-mutated MDS. Immunohistochemical staining of their skin lesions showed neutrophils diffusely positive for the IDH1 mutation. CONCLUSION: These cases demonstrate that IDH1 mutation may be implicated in the pathogenesis of malignancy-associated SS. Future investigation to elucidate this pathway is warranted. Establishing this molecular link can provide an earlier identification of patients with SS who are also at increased risk for developing MDS.


Subject(s)
Isocitrate Dehydrogenase/genetics , Mutation, Missense , Myelodysplastic Syndromes/genetics , Sweet Syndrome/genetics , Aged , DNA Methylation , DNA Mutational Analysis , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Myelodysplastic Syndromes/epidemiology , Polymorphism, Single Nucleotide , Sweet Syndrome/epidemiology
9.
Cancer Res ; 77(18): 4846-4857, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28684528

ABSTRACT

The bone marrow microenvironment influences malignant hematopoiesis, but how it promotes leukemogenesis has not been elucidated. In addition, the role of the bone marrow stroma in regulating clinical responses to DNA methyltransferase inhibitors (DNMTi) is also poorly understood. In this study, we conducted a DNA methylome analysis of bone marrow-derived stromal cells from myelodysplastic syndrome (MDS) patients and observed widespread aberrant cytosine hypermethylation occurring preferentially outside CpG islands. Stroma derived from 5-azacytidine-treated patients lacked aberrant methylation and DNMTi treatment of primary MDS stroma enhanced its ability to support erythroid differentiation. An integrative expression analysis revealed that the WNT pathway antagonist FRZB was aberrantly hypermethylated and underexpressed in MDS stroma. This result was confirmed in an independent set of sorted, primary MDS-derived mesenchymal cells. We documented a WNT/ß-catenin activation signature in CD34+ cells from advanced cases of MDS, where it associated with adverse prognosis. Constitutive activation of ß-catenin in hematopoietic cells yielded lethal myeloid disease in a NUP98-HOXD13 mouse model of MDS, confirming its role in disease progression. Our results define novel epigenetic changes in the bone marrow microenvironment, which lead to ß-catenin activation and disease progression of MDS. Cancer Res; 77(18); 4846-57. ©2017 AACR.


Subject(s)
Epigenesis, Genetic , Mesenchymal Stem Cells/pathology , Myelodysplastic Syndromes/pathology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Apoptosis , Cell Differentiation , Cell Proliferation , CpG Islands , DNA Methylation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Mesenchymal Stem Cells/metabolism , Mice , Mice, Transgenic , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Oncogene Proteins, Fusion/genetics , Tumor Cells, Cultured
10.
J Clin Invest ; 127(6): 2206-2221, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28436936

ABSTRACT

Mutations of the splicing factor-encoding gene U2AF1 are frequent in the myelodysplastic syndromes (MDS), a myeloid malignancy, and other cancers. Patients with MDS suffer from peripheral blood cytopenias, including anemia, and an increasing percentage of bone marrow myeloblasts. We studied the impact of the common U2AF1S34F mutation on cellular function and mRNA splicing in the main cell lineages affected in MDS. We demonstrated that U2AF1S34F expression in human hematopoietic progenitors impairs erythroid differentiation and skews granulomonocytic differentiation toward granulocytes. RNA sequencing of erythroid and granulomonocytic colonies revealed that U2AF1S34F induced a higher number of cassette exon splicing events in granulomonocytic cells than in erythroid cells. U2AF1S34F altered mRNA splicing of many transcripts that were expressed in both cell types in a lineage-specific manner. In hematopoietic progenitors, the introduction of isoform changes identified in the U2AF1S34F target genes H2AFY, encoding an H2A histone variant, and STRAP, encoding serine/threonine kinase receptor-associated protein, recapitulated phenotypes associated with U2AF1S34F expression in erythroid and granulomonocytic cells, suggesting a causal link. Furthermore, we showed that isoform modulation of H2AFY and STRAP rescues the erythroid differentiation defect in U2AF1S34F MDS cells, suggesting that splicing modulators could be used therapeutically. These data have critical implications for understanding MDS phenotypic heterogeneity and support the development of therapies targeting splicing abnormalities.


Subject(s)
Myelodysplastic Syndromes/genetics , Splicing Factor U2AF/genetics , Case-Control Studies , Cell Lineage , Cell Proliferation , Cells, Cultured , Erythropoiesis , Gene Ontology , Granulocytes/physiology , Humans , Mutation, Missense , Myelodysplastic Syndromes/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing , Splicing Factor U2AF/metabolism
11.
JCI Insight ; 2(7): e90932, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28405618

ABSTRACT

Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-ß family members are profibrotic cytokines and we observed significant TGF-ß1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-ß1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-ß1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-ß receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-ß/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.


Subject(s)
Janus Kinase 2/metabolism , Primary Myelofibrosis/drug therapy , Pyrazoles/pharmacology , Quinolines/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptors, Thrombopoietin/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Bone Marrow/pathology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Collagen/metabolism , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , Male , Megakaryocytes/metabolism , Megakaryocytes/pathology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Primary Myelofibrosis/metabolism , Signal Transduction , Smad3 Protein/metabolism
12.
Stem Cell Investig ; 3: 5, 2016.
Article in English | MEDLINE | ID: mdl-27358897

ABSTRACT

Primary myelofibrosis (PMF) is a Philadelphia chromosome negative myeloproliferative neoplasm (MPN) with adverse prognosis and is associated with bone marrow fibrosis and extramedullary hematopoiesis. Even though the discovery of the Janus kinase 2 (JAK2), thrombopoietin receptor (MPL) and calreticulin (CALR) mutations have brought new insights into the complex pathogenesis of MPNs, the etiology of fibrosis is not well understood. Furthermore, since JAK2 inhibitors do not lead to reversal of fibrosis further understanding of the biology of fibrotic process is needed for future therapeutic discovery. Transforming growth factor beta (TGF-ß) is implicated as an important cytokine in pathogenesis of bone marrow fibrosis. Various mouse models have been developed and have established the role of TGF-ß in the pathogenesis of fibrosis. Understanding the molecular alterations that lead to TGF-ß mediated effects on bone marrow microenvironment can uncover newer therapeutic targets against myelofibrosis. Inhibition of the TGF-ß pathway in conjunction with other therapies might prove useful in the reversal of bone marrow fibrosis in PMF.

13.
Cancer Res ; 76(16): 4841-4849, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27287719

ABSTRACT

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) suppress normal hematopoietic activity in part by enabling a pathogenic inflammatory milieu in the bone marrow. In this report, we show that elevation of angiopoietin-1 in myelodysplastic CD34(+) stem-like cells is associated with higher risk disease and reduced overall survival in MDS and AML patients. Increased angiopoietin-1 expression was associated with a transcriptomic signature similar to known MDS/AML stem-like cell profiles. In seeking a small-molecule inhibitor of this pathway, we discovered and validated pexmetinib (ARRY-614), an inhibitor of the angiopoietin-1 receptor Tie-2, which was also found to inhibit the proinflammatory kinase p38 MAPK (which is overactivated in MDS). Pexmetinib inhibited leukemic proliferation, prevented activation of downstream effector kinases, and abrogated the effects of TNFα on healthy hematopoietic stem cells. Notably, treatment of primary MDS specimens with this compound stimulated hematopoiesis. Our results provide preclinical proof of concept for pexmetinib as a Tie-2/p38 MAPK dual inhibitor applicable to the treatment of MDS/AML. Cancer Res; 76(16); 4841-9. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Indazoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/pathology , Receptor, TIE-2/antagonists & inhibitors , Urea/analogs & derivatives , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Angiopoietin-1/metabolism , Animals , Cell Line, Tumor , Drug Screening Assays, Antitumor , Gene Knockdown Techniques , Humans , Male , Mice , Proportional Hazards Models , Urea/pharmacology
14.
Oncotarget ; 6(42): 44061-71, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26623729

ABSTRACT

Recurrent somatic mutations of the epigenetic modifier and tumor suppressor ASXL1 are common in myeloid malignancies, including chronic myeloid leukemia (CML), and are associated with poor clinical outcome. CRISPR/Cas9 has recently emerged as a powerful and versatile genome editing tool for genome engineering in various species. We have used the CRISPR/Cas9 system to correct the ASXL1 homozygous nonsense mutation present in the CML cell line KBM5, which lacks ASXL1 protein expression. CRISPR/Cas9-mediated ASXL1 homozygous correction resulted in protein re-expression with restored normal function, including down-regulation of Polycomb repressive complex 2 target genes. Significantly reduced cell growth and increased myeloid differentiation were observed in ASXL1 mutation-corrected cells, providing new insights into the role of ASXL1 in human myeloid cell differentiation. Mice xenografted with mutation-corrected KBM5 cells showed significantly longer survival than uncorrected xenografts. These results show that the sole correction of a driver mutation in leukemia cells increases survival in vivo in mice. This study provides proof-of-concept for driver gene mutation correction via CRISPR/Cas9 technology in human leukemia cells and presents a strategy to illuminate the impact of oncogenic mutations on cellular function and survival.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Codon, Nonsense , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Repressor Proteins/genetics , Animals , Base Sequence , CRISPR-Associated Proteins/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Leukemic , Genetic Predisposition to Disease , Heterografts , Homozygote , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Molecular Sequence Data , Neoplasm Transplantation , Phenotype , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/metabolism , Time Factors , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
15.
Proc Natl Acad Sci U S A ; 112(46): E6359-68, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26578796

ABSTRACT

Anemia is the predominant clinical manifestation of myelodysplastic syndromes (MDS). Loss or deletion of chromosome 7 is commonly seen in MDS and leads to a poor prognosis. However, the identity of functionally relevant, dysplasia-causing, genes on 7q remains unclear. Dedicator of cytokinesis 4 (DOCK4) is a GTPase exchange factor, and its gene maps to the commonly deleted 7q region. We demonstrate that DOCK4 is underexpressed in MDS bone marrow samples and that the reduced expression is associated with decreased overall survival in patients. We show that depletion of DOCK4 levels leads to erythroid cells with dysplastic morphology both in vivo and in vitro. We established a novel single-cell assay to quantify disrupted F-actin filament network in erythroblasts and demonstrate that reduced expression of DOCK4 leads to disruption of the actin filaments, resulting in erythroid dysplasia that phenocopies the red blood cell (RBC) defects seen in samples from MDS patients. Reexpression of DOCK4 in -7q MDS patient erythroblasts resulted in significant erythropoietic improvements. Mechanisms underlying F-actin disruption revealed that DOCK4 knockdown reduces ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase activation, leading to increased phosphorylation of the actin-stabilizing protein ADDUCIN in MDS samples. These data identify DOCK4 as a putative 7q gene whose reduced expression can lead to erythroid dysplasia.


Subject(s)
Erythroblasts/metabolism , GTPase-Activating Proteins/biosynthesis , Gene Expression Regulation , Myelodysplastic Syndromes/metabolism , Actins/genetics , Actins/metabolism , Animals , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Erythroblasts/pathology , Female , GTPase-Activating Proteins/genetics , Humans , Male , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
16.
Blood ; 125(20): 3144-52, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25810490

ABSTRACT

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML.


Subject(s)
Hematopoietic Stem Cells/metabolism , Interleukin-8/metabolism , Leukemia, Myeloid, Acute/metabolism , Myelodysplastic Syndromes/metabolism , Receptors, Interleukin-8B/metabolism , Signal Transduction , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Cluster Analysis , Disease Models, Animal , Gene Expression , Gene Expression Profiling , Humans , Interleukin-8/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Mice , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Neoplastic Stem Cells/metabolism , Prognosis , Receptors, Interleukin-8B/antagonists & inhibitors , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
17.
Gastroenterology ; 144(5): 956-966.e4, 2013 May.
Article in English | MEDLINE | ID: mdl-23333711

ABSTRACT

BACKGROUND & AIMS: Alterations in methylation of protein-coding genes are associated with Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Dysregulation of noncoding RNAs occurs during carcinogenesis but has never been studied in BE or EAC. We applied high-resolution methylome analysis to identify changes at genomic regions that encode noncoding RNAs in BE and EAC. METHODS: We analyzed methylation of 1.8 million CpG sites using massively parallel sequencing-based HELP tagging in matched EAC, BE, and normal esophageal tissues. We also analyzed human EAC (OE33, SKGT4, and FLO-1) and normal (HEEpic) esophageal cells. RESULTS: BE and EAC exhibited genome-wide hypomethylation, significantly affecting intragenic and repetitive genomic elements as well as noncoding regions. These methylation changes targeted small and long noncoding regions, discriminating normal from matched BE or EAC tissues. One long noncoding RNA, AFAP1-AS1, was extremely hypomethylated and overexpressed in BE and EAC tissues and EAC cells. Its silencing by small interfering RNA inhibited proliferation and colony-forming ability, induced apoptosis, and reduced EAC cell migration and invasion without altering the expression of its protein-coding counterpart, AFAP1. CONCLUSIONS: BE and EAC exhibit reduced methylation that includes noncoding regions. Methylation of the long noncoding RNA AFAP1-AS1 is reduced in BE and EAC, and its expression inhibits cancer-related biologic functions of EAC cells.


Subject(s)
Adenocarcinoma/genetics , Barrett Esophagus/genetics , DNA, Neoplasm/genetics , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Microfilament Proteins/genetics , RNA, Long Noncoding/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Barrett Esophagus/metabolism , Barrett Esophagus/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , DNA Methylation , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Humans , Microfilament Proteins/metabolism , Promoter Regions, Genetic , RNA, Small Interfering/genetics
18.
Arch Immunol Ther Exp (Warsz) ; 60(1): 31-41, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22143157

ABSTRACT

Hematopoietic cell transplantation (HCT) offers potentially curative therapy for patients with myelodysplastic syndrome (MDS). However, as the majority of patients with MDS is in the 7th or 8th decade of life, only few of these patients were transplanted following high-dose conditioning regimens. The development of reduced-intensity conditioning has allowed to apply HCT also to older patients and those with clinically relevant comorbid conditions. Dependent upon disease status and the type of clonal chromosomal abnormalities present at the time of HCT, some 25-75% of patients will be cured of their disease and survive long term. Recent results with HLA-matched unrelated donors are comparable to those with HLA genotypically identical siblings. The increasing use of cord blood and HLA-haploidentical donors is expected to make HCT available to a growing number of patients. However, post-transplant relapse and graft-versus-host disease remain problems requiring further instigations.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Myelodysplastic Syndromes/surgery , Cytogenetic Analysis , Disease-Free Survival , Humans , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/physiopathology , Recurrence , Risk Factors , Tissue Donors , Transplantation Conditioning/methods , Transplantation, Homologous , Treatment Outcome
19.
Blood ; 118(18): 5031-9, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-21900190

ABSTRACT

Interleukin (IL)-32 was originally identified in natural killer cells and IL-2-activated human T lymphocytes. As T cells are activated in allogeneic transplantation, we determined the role of IL-32 in human mixed lymphocyte cultures (MLCs) and GVHD. In allogeneic MLCs, IL-32 increased two-fold in responding T cells, accompanied by five-fold increases of TNFα, IL-6, and IL-8. After allogeneic hematopoietic cell transplantation, IL-32 mRNA levels in blood leukocytes were statistically significantly higher in patients with acute GVHD (n = 10) than in serial samples from patients who did not develop acute GVHD (n = 5; P = .02). No significant changes in IL-32 levels were present in patients with treated (n = 14) or untreated (n = 8) chronic GVHD, compared with healthy controls (n = 8; P = .5, and P = .74, respectively). As IL-32 is activated by proteinase-3 (PR3), we determined the effect of the serine protease inhibitor α-1 antitrypsin (AAT) on IL-32 levels and showed suppression of IL-32 and T-lymphocyte proliferation in MLCs. In an MHC-minor antigen disparate murine transplant model, preconditioning and postconditioning treatment with AAT resulted in attenuation or prevention of GVHD and superior survival compared with albumin-treated controls (80% vs 44%; P = .04). These findings suggest that AAT modulates immune and inflammatory functions and may represent a novel approach to prevent or treat GVHD.


Subject(s)
Bone Marrow Transplantation/adverse effects , Graft Survival/drug effects , Graft vs Host Disease/prevention & control , Interleukins/antagonists & inhibitors , Transplantation Tolerance/drug effects , alpha 1-Antitrypsin/pharmacology , Adolescent , Adult , Aged , Animals , Bone Marrow Transplantation/immunology , Bone Marrow Transplantation/mortality , Cells, Cultured , Child , Disease Models, Animal , Graft vs Host Disease/blood , Graft vs Host Disease/mortality , Graft vs Host Disease/pathology , Humans , Interleukins/genetics , Interleukins/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Mice , Mice, Inbred C57BL , Middle Aged , Survival Analysis , Transplantation Conditioning/methods , Transplantation, Homologous , Young Adult , alpha 1-Antitrypsin/metabolism
20.
Wien Klin Wochenschr ; 123(9-10): 276-84, 2011 May.
Article in English | MEDLINE | ID: mdl-21516329

ABSTRACT

BACKGROUND: Currently, the conceptualization and treatment of personality pathologies are mainly theory driven. The resulting categorical classification of personality disorders leads to inaccurate diagnoses and is therefore being criticized by many researchers and clinicians. A consensus exists that in the upcoming edition of the DSM (DSM 5), the classification of personality disorders should rather adopt a dimensional approach, where patients are assessed depending on their character traits, inner-defense mechanisms, and interpersonal functioning. However, the basis (theoretical or empirical) of this classification-system is still a topic of dispute. This study presents assessment methods based on both theoretical and empirical assumptions. OBJECTIVE: To determine whether psychodynamic instruments employed in psychoanalytic settings are also useful for measuring changes in personality pathology in psychiatric inpatient settings. METHODS: Matched pairs between two groups of patients, one receiving outpatient psychoanalytic care (n = 10; mean age 36 ± 11), the other inpatient social-psychiatric treatment (n = 10; mean age 27 ± 6), were created and subsequently analyzed (mean observation period 20 ± 11 days). Patients were assessed using psychodynamic instruments measuring changes in quality of object relations (QORS) and affect regulation and experience (AREQ). To allow conclusions concerning the respective mechanisms of change, the influence of the therapeutic relationship, measured by using instruments evaluating transference (PRQ) and countertransference (CTQ) patterns, was also assessed. RESULTS: The instruments aforementioned were shown to be suited for both psychoanalytic and psychiatric patients. Typical short-term developments of the distinctive therapeutic procedures were evident; however, in both settings a positive working alliance was shown to be crucial for therapeutic progress. CONCLUSION: The psychodynamic instruments introduced in this study proved to be effective in measuring personality pathology in psychiatric inpatients and in helping clinicians throughout the indication and recommendation process during transition from inpatient to outpatient treatment. Since components of such assessment methods are being considered for DSM 5, their practical utility is shown in this study.


Subject(s)
Diagnostic and Statistical Manual of Mental Disorders , Personality Assessment/statistics & numerical data , Personality Disorders/classification , Personality Disorders/therapy , Psychoanalytic Therapy , Adult , Affect , Ambulatory Care , Austria , Character , Countertransference , Defense Mechanisms , Diagnosis, Differential , Female , Hospitalization , Humans , Interpersonal Relations , Male , Mental Disorders/classification , Mental Disorders/diagnosis , Mental Disorders/psychology , Mental Disorders/therapy , Middle Aged , Object Attachment , Personality Disorders/diagnosis , Personality Disorders/psychology , Psychometrics/statistics & numerical data , Q-Sort/statistics & numerical data , Reproducibility of Results , Transference, Psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL