Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Front Pharmacol ; 15: 1455696, 2024.
Article in English | MEDLINE | ID: mdl-39346565

ABSTRACT

Many bacteria act pathogenic by the release of AB-type protein toxins that efficiently enter human or animal cells and act as enzymes in their cytosol. This leads to disturbed cell functions and the clinical symptoms characteristic for the individual toxin. Therefore, molecules that directly target and neutralize these toxins provide promising novel therapeutic options. Here, we found that the FDA-approved drug disulfiram (DSF), used for decades to treat alcohol abuse, protects cells from intoxication with diphtheria toxin (DT) from Corynebacterium diphtheria, the causative agent of diphtheria, lethal toxin (LT) from Bacillus anthracis, which contributes to anthrax, and C2 enterotoxin from Clostridium botulinum when applied in concentrations lower than those found in plasma of patients receiving standard DSF treatment for alcoholism (up to 20 µM). Moreover, this inhibitory effect is increased by copper, a known enhancer of DSF activity. LT and C2 are binary toxins, consisting of two non-linked proteins, an enzyme (A) and a separate binding/transport (B) subunit. To act cytotoxic, their proteolytically activated B subunits PA63 and C2IIa, respectively, form barrel-shaped heptamers that bind to their cellular receptors and form complexes with their respective A subunits LF and C2I. The toxin complexes are internalized via receptor-mediated endocytosis and in acidified endosomes, PA63 and C2IIa form pores in endosomal membranes, which facilitate translocation of LF and C2I into the cytosol, where they act cytotoxic. In DT, A and B subunits are located within one protein, but DT also forms pores in endosomes that facilitate translocation of the A subunit. If cell binding, membrane translocation, or substrate modification is inhibited, cells are protected from intoxication. Our results implicate that DSF neither affects cellular binding nor the catalytic activity of the investigated toxins to a relevant extend, but interferes with the toxin pore-mediated translocation of the A subunits of DT, LT and C2 toxin, as demonstrated by membrane-translocation assays and toxin pore conductivity experiments in the presence or absence of DSF. Since toxin translocation across intracellular membranes represents a central step during cellular uptake of many bacterial toxins, DSF might neutralize a broad spectrum of medically relevant toxins.

2.
Cell Mol Life Sci ; 81(1): 409, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289189

ABSTRACT

Autophagy is an evolutionarily ancient catabolic pathway and has recently emerged as an integral part of the innate immune system. While the core machinery of autophagy is well defined, the physiological regulation of autophagy is less understood. Here, we identify a C-terminal fragment of human hemoglobin A (HBA1, amino acids 111-132) in human bone marrow as a fast-acting non-inflammatory inhibitor of autophagy initiation. It is proteolytically released from full-length HBA1 by cathepsin E, trypsin or pepsin. Biochemical characterization revealed that HBA1(111-132) has an in vitro stability of 52 min in human plasma and adopts a flexible monomeric conformation in solution. Structure-activity relationship studies revealed that the C-terminal 13 amino acids of HBA1(120-132) are sufficient to inhibit autophagy, two charged amino acids (D127, K128) mediate solubility, and two serines (S125, S132) are required for function. Successful viruses like human immunodeficiency virus 1 (HIV-1) evolved strategies to subvert autophagy for virion production. Our results show that HBA1(120-132) reduced virus yields of lab-adapted and primary HIV-1. Summarizing, our data identifies naturally occurring HBA1(111-132) as a physiological, non-inflammatory antagonist of autophagy. Optimized derivatives of HBA1(111-132) may offer perspectives to restrict autophagy-dependent viruses.


Subject(s)
Autophagy , HIV-1 , Humans , HIV-1/metabolism , HIV-1/physiology , Structure-Activity Relationship , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Amino Acid Sequence
3.
Sci Rep ; 14(1): 21257, 2024 09 11.
Article in English | MEDLINE | ID: mdl-39261531

ABSTRACT

The bacterium Clostridium botulinum, well-known for producing botulinum neurotoxins, which cause the severe paralytic illness known as botulism, produces C2 toxin, a binary AB-toxin with ADP-ribosyltranferase activity. C2 toxin possesses two separate protein components, an enzymatically active A-component C2I and the binding and translocation B-component C2II. After proteolytic activation of C2II to C2IIa, the heptameric structure binds C2I and is taken up via receptor-mediated endocytosis into the target cells. Due to acidification of endosomes, the C2IIa/C2I complex undergoes conformational changes and consequently C2IIa forms a pore into the endosomal membrane and C2I can translocate into the cytoplasm, where it ADP-ribosylates G-actin, a key component of the cytoskeleton. This modification disrupts the actin cytoskeleton, resulting in the collapse of cytoskeleton and ultimately cell death. Here, we show that the serine-protease inhibitor α1-antitrypsin (α1AT) which we identified previously from a hemofiltrate library screen for PT from Bordetella pertussis is a multitoxin inhibitor. α1AT inhibits intoxication of cells with C2 toxin via inhibition of binding to cells and inhibition of enzyme activity of C2I. Moreover, diphtheria toxin and an anthrax fusion toxin are inhibited by α1AT. Since α1AT is commercially available as a drug for treatment of the α1AT deficiency, it could be repurposed for treatment of toxin-mediated diseases.


Subject(s)
Bacterial Toxins , Botulinum Toxins , alpha 1-Antitrypsin , Botulinum Toxins/metabolism , Botulinum Toxins/antagonists & inhibitors , Botulinum Toxins/chemistry , Humans , alpha 1-Antitrypsin/metabolism , alpha 1-Antitrypsin/chemistry , Bacterial Toxins/metabolism , Diphtheria Toxin/metabolism , Corynebacterium diphtheriae/metabolism , Corynebacterium diphtheriae/drug effects , Antigens, Bacterial/metabolism , Animals , Clostridium botulinum/metabolism , Bacillus anthracis/metabolism , Bacillus anthracis/drug effects
4.
Article in English | MEDLINE | ID: mdl-38958734

ABSTRACT

Pertussis toxin (PT) is a virulent factor produced by Bordetella pertussis, the causative agent of whooping cough. PT exerts its pathogenic effects by ADP-ribosylating heterotrimeric G proteins, disrupting cellular signaling pathways. Here, we investigate the potential of two antiarrhythmic drugs, amiodarone and dronedarone, in mitigating PT-induced cellular intoxication. After binding to cells, PT is endocytosed, transported from the Golgi to the endoplasmic reticulum where the enzyme subunit PTS1 is released from the transport subunit of PT. PTS1 is translocated into the cytosol where it ADP-ribosylates inhibitory α-subunit of G-protein coupled receptors (Gαi). We showed that amiodarone and dronedarone protected CHO cells and human A549 cells from PT-intoxication by analyzing the ADP-ribosylation status of Gαi. Amiodarone had no effect on PT binding to cells or in vitro enzyme activity of PTS1 but reduced the signal of PTS1 in the cell suggesting that amiodarone interferes with intracellular transport of PTS1. Moreover, dronedarone mitigated the PT-mediated effect on cAMP signaling in a cell-based bioassay. Taken together, our findings underscore the inhibitory effects of amiodarone and dronedarone on PT-induced cellular intoxication, providing valuable insights into drug repurposing for infectious disease management.

5.
Article in English | MEDLINE | ID: mdl-38935126

ABSTRACT

The dreaded nosocomial pathogen Clostridioides difficile causes diarrhea and severe inflammation of the colon, especially after the use of certain antibiotics. The bacterium releases two deleterious toxins, TcdA and TcdB, into the gut, which are mainly responsible for the symptoms of C. difficile-associated diseases (CDADs). Both toxins are capable of entering independently into various host cells, e.g., intestinal epithelial cells, where they mono-O-glucosylate and inactivate Rho and/or Ras GTPases, important molecular switches for various cellular functions. We have shown recently that the cellular uptake of the Clostridioides difficile toxins TcdA and TcdB (TcdA/B) is inhibited by the licensed class III antiarrhythmic drug amiodarone (Schumacher et al. in Gut Microbes 15(2):2256695, 2023). Mechanistically, amiodarone delays the cellular uptake of both toxins into target cells most likely by lowering membrane cholesterol levels and by interfering with membrane insertion and/or pore formation of TcdA/B. However, serious side effects, such as thyroid dysfunction and severe pulmonary fibrosis, limit the clinical use of amiodarone in patients with C. difficile infection (CDI). For that reason, we aimed to test whether dronedarone, an amiodarone derivative with a more favorable side effect profile, is also capable of inhibiting TcdA/B. To this end, we tested in vitro with various methods the impact of dronedarone on the intoxication of Vero and CaCo-2 cells with TcdA/B. Importantly, preincubation of both cell lines with dronedarone for 1 h at concentrations in the low micromolar range rendered the cells less sensitive toward TcdA/B-induced Rac1 glucosylation, collapse of the actin cytoskeleton, cell rounding, and cytopathic effects, respectively. Our study points toward the possibility of repurposing the already approved drug dronedarone as the preferable safer-to-use alternative to amiodarone for inhibiting TcdA/B in the (supportive) therapy of CDADs.

6.
Sci Rep ; 14(1): 6043, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38472311

ABSTRACT

Shiga toxins (Stx) produced by pathogenic bacteria can cause mild to severe diseases in humans. Thus, the analysis of such toxins is of utmost importance. As an AB5 toxin, Stx consist of a catalytic A-subunit acting as a ribosome-inactivating protein (RIP) and a B-pentamer binding domain. In this study we synthesized the subunits and holotoxins from Stx and Stx2a using different cell-free systems, namely an E. coli- and CHO-based cell-free protein synthesis (CFPS) system. The functional activity of the protein toxins was analyzed in two ways. First, activity of the A-subunits was assessed using an in vitro protein inhibition assay. StxA produced in an E. coli cell-free system showed significant RIP activity at concentrations of 0.02 nM, whereas toxins synthesized in a CHO cell-free system revealed significant activity at concentrations of 0.2 nM. Cell-free synthesized StxA2a was compared to StxA2a expressed in E. coli cells. Cell-based StxA2a had to be added at concentrations of 20 to 200 nM to yield a significant RIP activity. Furthermore, holotoxin analysis on cultured HeLa cells using an O-propargyl-puromycin assay showed significant protein translation reduction at concentrations of 10 nM and 5 nM for cell-free synthesized toxins derived from E. coli and CHO systems, respectively. Overall, these results show that Stx can be synthesized using different cell-free systems while remaining functionally active. In addition, we were able to use CFPS to assess the activity of different Stx variants which can further be used for RIPs in general.


Subject(s)
Escherichia coli , Shiga Toxins , Humans , Shiga Toxins/metabolism , Escherichia coli/genetics , Cell-Free System/metabolism , HeLa Cells , Protein Biosynthesis
7.
Analyst ; 149(9): 2637-2646, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38529543

ABSTRACT

Silver nanoparticles (AgNPs) conjugated with polymers are well-known for their powerful and effective antimicrobial properties. In particular, the incorporation of AgNPs in biocompatible catecholamine-based polymers, such as polydopamine (PDA), has recently shown promising antimicrobial activity, due to the synergistic effects of the AgNPs, silver(I) ions released and PDA. In this study, we generated AgNPs-PDA-patterned surfaces by localised electrochemical depositions, using a double potentiostatic method via scanning electrochemical cell microscopy (SECCM). This technique enabled the assessment of a wide parameter space in a high-throughput manner. The optimised electrodeposition process resulted in stable and homogeneously distributed AgNP-microspots, and their antimicrobial activity against Escherichia coli was assessed using atomic force microscopy (AFM)-based force spectroscopy, in terms of bacterial adhesion and cell elasticity. We observed that the bacterial outer membrane underwent significant structural changes, when in close proximity to the AgNPs, namely increased hydrophilicity and stiffness loss. The spatially varied antimicrobial effect found experimentally was rationalised by numerical simulations of silver(I) concentration profiles.


Subject(s)
Escherichia coli , Metal Nanoparticles , Silver , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microscopy, Atomic Force , Polymers/chemistry , Polymers/pharmacology , Bacterial Adhesion/drug effects , Indoles/chemistry , Indoles/pharmacology
8.
Adv Exp Med Biol ; 1435: 219-247, 2024.
Article in English | MEDLINE | ID: mdl-38175478

ABSTRACT

Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Enterocolitis, Pseudomembranous , Humans , Bacterial Toxins/toxicity , Biological Transport , Antibodies, Bacterial
9.
Toxins (Basel) ; 16(1)2024 01 10.
Article in English | MEDLINE | ID: mdl-38251252

ABSTRACT

Pertussis toxin (PT) is a bacterial AB5-toxin produced by Bordetella pertussis and a major molecular determinant of pertussis, also known as whooping cough, a highly contagious respiratory disease. In this study, we investigate the protective effects of the chaperonin TRiC/CCT inhibitor, HSF1A, against PT-induced cell intoxication. TRiC/CCT is a chaperonin complex that facilitates the correct folding of proteins, preventing misfolding and aggregation, and maintaining cellular protein homeostasis. Previous research has demonstrated the significance of TRiC/CCT in the functionality of the Clostridioides difficile TcdB AB-toxin. Our findings reveal that HSF1A effectively reduces the levels of ADP-ribosylated Gαi, the specific substrate of PT, in PT-treated cells, without interfering with enzyme activity in vitro or the cellular binding of PT. Additionally, our study uncovers a novel interaction between PTS1 and the chaperonin complex subunit CCT5, which correlates with reduced PTS1 signaling in cells upon HSF1A treatment. Importantly, HSF1A mitigates the adverse effects of PT on cAMP signaling in cellular systems. These results provide valuable insights into the mechanisms of PT uptake and suggest a promising starting point for the development of innovative therapeutic strategies to counteract pertussis toxin-mediated pathogenicity.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Pertussis Toxin , Bacterial Toxins/toxicity , Cytosol , Antibodies, Bacterial , Chaperonin Containing TCP-1
10.
Sci Rep ; 13(1): 20175, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978264

ABSTRACT

Besides the many advantages of oral drug administration, challenges like premature drug degradation and limited bioavailability in the gastro-intestinal tract (GIT) remain. A prolonged residence time in the GIT is beneficial for enhancing the therapeutic outcome when treating diseases associated with an increased intestinal clearance rate, like inflammatory bowel disease (IBD). In this study, we synthesized rod-shaped mesoporous silica nanoparticles (MSNs) functionalized with polyethylene glycol (PEG) or hyaluronic acid (HA) and investigated their bio-distribution upon oral administration in vivo. The negatively charged, non-toxic particles showed different accumulation behavior over time in healthy mice and in mice with dextran sulfate sodium (DSS)-induced intestinal inflammation. PEGylated particles were shown to accumulate in the lower intestinal tract of healthy animals, whereas inflammation promoted retention of HA-functionalized particles in this area. Overall systemic absorption was low. However, some particles were detected in organs of mice with DSS-induced colitis, especially in the case of MSN-PEG. The in vivo findings were connected to surface chemistry-related differences in particle adhesion on Caco-2/Raji and mucus-producing Caco-2/Raji/HT29 cell co-culture epithelial models in vitro. While the particle adhesion behavior in vivo was mirrored in the in vitro results, this was not the case for the resorption results, suggesting that the in vitro model does not fully reflect the erosion of the inflamed epithelial tissue. Overall, our study demonstrates the possibility to modulate accumulation and retention of MSNs in the GIT of mice with and without inflammation through surface functionalization, which has important implications for the formulation of nanoparticle-based delivery systems for oral delivery applications.


Subject(s)
Colitis , Nanoparticles , Humans , Mice , Animals , Drug Delivery Systems/methods , Caco-2 Cells , Silicon Dioxide , Colitis/chemically induced , Colitis/drug therapy , Polyethylene Glycols , Inflammation , Dextran Sulfate
11.
Article in English | MEDLINE | ID: mdl-37999755

ABSTRACT

Trauma and toxic substances are connected in several aspects. On the one hand, toxic substances can be the reason for traumatic injuries in the context of accidental or violent and criminal circumstances. Examples for the first scenario is the release of toxic gases, chemicals, and particles during house fires, and for the second scenario, the use of chemical or biological weapons in the context of terroristic activities. Toxic substances can cause or enhance severe, life-threatening trauma, as described in this review for various chemical warfare, by inducing a tissue trauma accompanied by break down of important barriers in the body, such as the blood-air or the blood-gut barriers. This in turn initiates a "vicious circle" as the contribution of inflammatory responses to the traumatic damage enhances the macro- and micro-barrier breakdown and often results in fatal outcome. The development of sophisticated methods for detection and identification of toxic substances as well as the special treatment of the intoxicated trauma patient is summarized in this review. Moreover, some highly toxic substances, such as the protein toxins from the pathogenic bacterium Clostridioides (C.) difficile, cause severe post-traumatic complications which significantly worsens the outcome of hospitalized patients, in particular in multiply injured trauma patients. Therefore, novel pharmacological options for the treatment of such patients are necessarily needed and one promising strategy might be the neutralization of the toxins that cause the disease. This review summarizes recent findings on the molecular and cellular mechanisms of toxic chemicals and bacterial toxins that contribute to barrier breakdown in the human body as wells pharmacological options for treatment, in particular in the context of intoxicated trauma patients. "trauma-toxicology" comprises concepts regrading basic research, development of novel pharmacological/therapeutic options and clinical aspects in the complex interplay and "vicious circle" of severe tissue trauma, barrier breakdown, pathogen and toxin exposure, tissue damage, and subsequent clinical complications.

12.
Anal Chem ; 95(45): 16600-16608, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37883708

ABSTRACT

Bacterial sensing based on quantum cascade laser spectroscopy coupled with diamond or gallium arsenide thin-film waveguides is a novel analytical tool for gaining high-resolution infrared spectroscopic information of planktonic and sessile bacteria, as shown in the present study for Escherichia coli. During observation periods of up to 24 h, diamond and gallium arsenide thin-film waveguide laser spectroscopy was compared to information obtained via conventional Fourier transform infrared spectroscopy. The proliferation behavior of E. coli at those surfaces was complementarily investigated using atomic force microscopy and scanning electron microscopy.


Subject(s)
Escherichia coli , Lasers , Spectroscopy, Fourier Transform Infrared , Diamond/chemistry
13.
Gut Microbes ; 15(2): 2256695, 2023 12.
Article in English | MEDLINE | ID: mdl-37749884

ABSTRACT

The intestinal pathogen Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans. The symptoms of C. difficile-associated diseases (CDADs) are directly associated with the pathogen's toxins TcdA and TcdB, which enter host cells and inactivate Rho and/or Ras GTPases by glucosylation. Membrane cholesterol is crucial during the intoxication process of TcdA and TcdB, and likely involved during pore formation of both toxins in endosomal membranes, a key step after cellular uptake for the translocation of the glucosyltransferase domain of both toxins from endosomes into the host cell cytosol. The licensed drug amiodarone, a multichannel blocker commonly used in the treatment of cardiac dysrhythmias, is also capable of inhibiting endosomal acidification and, as shown recently, cholesterol biosynthesis. Thus, we were keen to investigate in vitro with cultured cells and human intestinal organoids, whether amiodarone preincubation protects from TcdA and/or TcdB intoxication. Amiodarone conferred protection against both toxins independently and in combination as well as against toxin variants from the clinically relevant, epidemic C. difficile strain NAP1/027. Further mechanistic studies suggested that amiodarone's mode-of-inhibition involves also interference with the translocation pore of both toxins. Our study opens the possibility of repurposing the licensed drug amiodarone as a novel pan-variant antitoxin therapeutic in the context of CDADs.


Subject(s)
Amiodarone , Bacterial Toxins , Clostridioides difficile , Gastrointestinal Microbiome , Humans , Anti-Arrhythmia Agents/pharmacology , Amiodarone/pharmacology , Antibodies, Bacterial
14.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445740

ABSTRACT

Whooping cough is a severe childhood disease, caused by the bacterium Bordetella pertussis, which releases pertussis toxin (PT) as a major virulence factor. Previously, we identified the human antimicrobial peptides α-defensin-1 and -5 as inhibitors of PT and demonstrated their capacity to inhibit the activity of the PT enzyme subunit PTS1. Here, the underlying mechanism of toxin inhibition was investigated in more detail, which is essential for developing the therapeutic potential of these peptides. Flow cytometry and immunocytochemistry revealed that α-defensin-5 strongly reduced PT binding to, and uptake into cells, whereas α-defensin-1 caused only a mild reduction. Conversely, α-defensin-1, but not α-defensin-5 was taken up into different cell lines and interacted with PTS1 inside cells, based on proximity ligation assay. In-silico modeling revealed specific interaction interfaces for α-defensin-1 with PTS1 and vice versa, unlike α-defensin-5. Dot blot experiments showed that α-defensin-1 binds to PTS1 and even stronger to its substrate protein Gαi in vitro. NADase activity of PTS1 in vitro was not inhibited by α-defensin-1 in the absence of Gαi. Taken together, these results suggest that α-defensin-1 inhibits PT mainly by inhibiting enzyme activity of PTS1, whereas α-defensin-5 mainly inhibits cellular uptake of PT. These findings will pave the way for optimization of α-defensins as novel therapeutics against whooping cough.


Subject(s)
Whooping Cough , Humans , Child , Pertussis Toxin/pharmacology , Whooping Cough/microbiology , Bordetella pertussis , Proteins , Cell Line
15.
Toxins (Basel) ; 15(7)2023 06 25.
Article in English | MEDLINE | ID: mdl-37505681

ABSTRACT

Bordetella pertussis toxin (PT) and Clostridium botulinum C2 toxin are ADP-ribosylating toxins causing severe diseases in humans and animals. They share a common translocation mechanism requiring the cellular chaperones Hsp90 and Hsp70, cyclophilins, and FK506-binding proteins to transport the toxins' enzyme subunits into the cytosol. Inhibitors of chaperone activities have been shown to reduce the amount of transported enzyme subunits into the cytosol of cells, thus protecting cells from intoxication by these toxins. Recently, domperidone, an approved dopamine receptor antagonist drug, was found to inhibit Hsp70 activity. Since Hsp70 is required for cellular toxin uptake, we hypothesized that domperidone also protects cells from intoxication with PT and C2. The inhibition of intoxication by domperidone was demonstrated by analyzing the ADP-ribosylation status of the toxins' specific substrates. Domperidone had no inhibitory effect on the receptor-binding or enzyme activity of the toxins, but it inhibited the pH-driven membrane translocation of the enzyme subunit of the C2 toxin and reduced the amount of PTS1 in cells. Taken together, our results indicate that domperidone is a potent inhibitor of PT and C2 toxins in cells and therefore might have therapeutic potential by repurposing domperidone to treat diseases caused by bacterial toxins that require Hsp70 for their cellular uptake.


Subject(s)
Bacterial Toxins , Botulinum Toxins , Animals , Humans , Bordetella pertussis/metabolism , Domperidone/pharmacology , Botulinum Toxins/toxicity , Bacterial Toxins/metabolism , Pertussis Toxin , ADP Ribose Transferases/metabolism
16.
Toxins (Basel) ; 15(6)2023 06 07.
Article in English | MEDLINE | ID: mdl-37368685

ABSTRACT

Clostridioides difficile infections cause severe symptoms ranging from diarrhea to pseudomembranous colitis due to the secretion of AB-toxins, TcdA and TcdB. Both toxins are taken up into cells through receptor-mediated endocytosis, autoproteolytic processing and translocation of their enzyme domains from acidified endosomes into the cytosol. The enzyme domains glucosylate small GTPases such as Rac1, thereby inhibiting processes such as actin cytoskeleton regulation. Here, we demonstrate that specific pharmacological inhibition of Hsp70 activity protected cells from TcdB intoxication. In particular, the established inhibitor VER-155008 and the antiemetic drug domperidone, which was found to be an Hsp70 inhibitor, reduced the number of cells with TcdB-induced intoxication morphology in HeLa, Vero and intestinal CaCo-2 cells. These drugs also decreased the intracellular glucosylation of Rac1 by TcdB. Domperidone did not inhibit TcdB binding to cells or enzymatic activity but did prevent membrane translocation of TcdB's glucosyltransferase domain into the cytosol. Domperidone also protected cells from intoxication with TcdA as well as CDT toxin produced by hypervirulent strains of Clostridioides difficile. Our results reveal Hsp70 requirement as a new aspect of the cellular uptake mechanism of TcdB and identified Hsp70 as a novel drug target for potential therapeutic strategies required to combat severe Clostridioides difficile infections.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Humans , Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Domperidone/pharmacology , Domperidone/metabolism , Caco-2 Cells , Bacterial Proteins/metabolism , Enterotoxins/toxicity , Enterotoxins/metabolism
17.
Toxins (Basel) ; 15(6)2023 06 09.
Article in English | MEDLINE | ID: mdl-37368691

ABSTRACT

The binary Clostridium (C.) botulinum C2 toxin consists of two non-linked proteins. The proteolytically activated binding/transport subunit C2IIa forms barrel-shaped homoheptamers, which bind to cell surface receptors, mediate endocytosis, and translocate the enzyme subunit C2I into the cytosol of target cells. Here, we investigate whether C2IIa can be harnessed as a transporter for proteins/enzymes fused to polycationic tags, as earlier demonstrated for the related anthrax toxin transport subunit PA63. To test C2IIa-mediated transport in cultured cells, reporter enzymes are generated by fusing different polycationic tags to the N- or C-terminus of other bacterial toxins' catalytic A subunits. C2IIa as well as PA63 deliver N-terminally polyhistidine-tagged proteins more efficiently compared to C-terminally tagged ones. However, in contrast to PA63, C2IIa does not efficiently deliver polylysine-tagged proteins into the cytosol of target cells. Moreover, untagged enzymes with a native cationic N-terminus are efficiently transported by both C2IIa and PA63. In conclusion, the C2IIa-transporter serves as a transport system for enzymes that harbor positively charged amino acids at their N-terminus. The charge distribution at the N-terminus of cargo proteins and their ability to unfold in the endosome and subsequently refold in the cytosol determine transport feasibility and efficiency.


Subject(s)
Botulinum Toxins , Cytosol/metabolism , Botulinum Toxins/chemistry , Endosomes/metabolism , Endocytosis
18.
J Am Chem Soc ; 145(10): 5960-5969, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36857421

ABSTRACT

We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.


Subject(s)
Fumarates , Magnetic Resonance Imaging , Mice , Animals , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging/methods , Hydrogenation , Contrast Media
19.
Anal Bioanal Chem ; 415(11): 2059-2070, 2023 May.
Article in English | MEDLINE | ID: mdl-36434170

ABSTRACT

Antibacterial polymer materials have gained interest due to their capability to inhibit or eradicate biofilms with greater efficiency in comparison with their monomeric counterparts. Among the antimicrobial and anti-biofouling polymers, catecholamine-based polymers - and in particular polydopamine - have been studied due to their favorable adhesion properties, which can be tuned by controlling the pH value. In this study, we used atomic force microscopy (AFM)-based spectroscopy to investigate the relation between the adhesion properties and surface charge density and the pH of electrochemically deposited polydopamine films presenting a dissociation constant of polydopamine of 6.3 ± 0.2 and a point of zero charge of 5.37 ± 0.06. Furthermore, using AFM and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), the influence of the surface charge density of polydopamine on bacterial adhesion and biofilm formation was investigated. It was shown that the adhesion of Escherichia coli at positively charged polydopamine is three times higher compared to a negatively charged polymer, and that the formation of biofilms is favored at positively charged polymers.


Subject(s)
Biofouling , Polymers , Polymers/chemistry , Biofilms , Indoles/chemistry , Bacterial Adhesion , Microscopy, Atomic Force , Spectroscopy, Fourier Transform Infrared/methods , Surface Properties
20.
Molecules ; 27(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557784

ABSTRACT

Antimicrobial materials are considered potential alternatives to prevent the development of biofilm-associated contaminations. Concerns regarding synthetic preservatives necessitate the development of innovative and safe natural antimicrobials. In the present study, we discuss the in situ infrared attenuated total reflection spectroscopy (IR-ATR) investigations of the selective antimicrobial efficiency of chitosan in controlling the growth of Lentilactobacillus parabuchneri biofilms. The protonated charges of chitosan were additionally amplified by structural modification via methylation, yielding quaternized derivative TMC (i.e., N, N, N-trimethyl chitosan). To evaluate antimicrobial effectiveness against L. parab. biofilms, IR-ATR spectroscopy provided information on molecular mechanisms and insights into chemical changes during real-time biofilm inhibition studies. The integrated fiberoptic oxygen microsensors enabled monitoring oxygen (O2) concentration gradients within biofilms, thereby confirming the metabolic oxygen depletion dropping from 4.5 to 0.7 mg L-1. IR studies revealed strong electrostatic interactions between chitosan/its water-soluble derivative and bacteria, indicating that a few hours were sufficient to affect biofilm disruption. The significant decrease in the IR bands is related to the characteristic spectral information of amide I, II, III, nucleic acid, and extracellular polymeric matrix (EPS) produced by L. parabuchneri biofilms. Cell clusters of biofilms, microcolonies, and destabilization of the EPS matrix after the addition of biopolymers were visualized using optical microscopy. In addition, scanning electron microscopy (SEM) of biofilms grown on polystyrene and stainless-steel surfaces was used to examine morphological changes, indicating the disintegration of the biofilm matrix into individual cells. Quantification of the total biofilm formation correlated with the CV assay results, indicating cell death and lysis. The electrostatic interactions between chitosan and the bacterial cell wall typically occur between protonated amino groups and negatively charged phospholipids, which promote permeabilization. Biofilm growth inhibition was assessed by a viability assay for a period of 72 h and in the range of low MIC values (varying 0.01-2%). These results support the potential of chitosan and TMC for bacterial growth prevention of the foodborne contaminant L. parabuchneri in the dairy industry and for further implementation in food packaging.


Subject(s)
Anti-Infective Agents , Chitosan , Chitosan/pharmacology , Biofilms , Extracellular Polymeric Substance Matrix , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL