Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Int J Biol Macromol ; 208: 288-298, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35248612

ABSTRACT

Tetragenococcus halophilus exopolysaccharides (THPS) are metabolites released by T. halophilus SNTH-8 to resist a high-salt environment. Although many studies have investigated the mechanisms underlying salt tolerance shown by T. halophilus, structural characteristics as well as antioxidant and emulsifying capacities of THPS remain unclear. In this study, we isolated and purified two components, THPS-1 and THPS-2, from T. halophilus SNTH-8. Purified THPS-1 and THPS-2 were composed of arabinose, xylose, fucose, galactose, glucose, and glucuronic acid at a molar ratio of 1.66:38.95:2.11:26.12:29.73:1.43 and 0.46:40.3:0.54:30.8:1.36:25.54, respectively. The average molecular weights of THPS-1 and THPS-2 were 14.98 kDa and 21.03 kDa, respectively. Moreover, the structures of THPS-1 and THPS-2 were investigated via fourier-transform infrared spectroscopy(FT-IR), nuclear magnetic resonance spectroscopy(NMR), scanning electron microscopy(SEM), and methylation analysis. THPS-1 was a highly branched polysaccharide with a backbone of α-D-(1,4)-Xyl, α-D-(1,6)-Glc and α-D-Xyl as the terminal, while THPS-2 was a highly branched polysaccharide with a backbone of α-D-(1,4)-Xyl and ß-D-GlcA as the terminal. The branches were identified as ß-D-(1,4,6)-Gal and ß-D-(1,6)-Gal. Both THPS-1 and THPS-2 exhibited high antioxidant and emulsifying capacities. Overall, our structural analysis of THPS may further enhance research on natural emulsifiers and antioxidants.


Subject(s)
Antioxidants , Polysaccharides , Antioxidants/chemistry , Enterococcaceae , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL