Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Eur Respir J ; 64(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-38991711

ABSTRACT

INTRODUCTION: Pathogenic variants in the gene encoding for BMPR2 are a major genetic risk factor for heritable pulmonary arterial hypertension. Owing to incomplete penetrance, deep phenotyping of unaffected carriers of a pathogenic BMPR2 variant through multimodality screening may aid in early diagnosis and identify susceptibility traits for future development of pulmonary arterial hypertension. METHODS: 28 unaffected carriers (44±16 years, 57% female) and 21 healthy controls (44±18 years, 48% female) underwent annual screening, including cardiac magnetic resonance imaging, transthoracic echocardiography, cardiopulmonary exercise testing and right heart catheterisation. Right ventricular pressure-volume loops were constructed to assess load-independent contractility and compared with a healthy control group. A transgenic Bmpr2Δ71Ex1/+ rat model was employed to validate findings from humans. RESULTS: Unaffected carriers had lower indexed right ventricular end-diastolic (79.5±17.6 mL·m-2 versus 62.7±15.3 mL·m-2; p=0.001), end-systolic (34.2±10.5 mL·m-2 versus 27.1±8.3 mL·m-2; p=0.014) and left ventricular end-diastolic (68.9±14.1 mL·m-2 versus 58.5±10.7 mL·m-2; p=0.007) volumes than control subjects. Bmpr2Δ71Ex1/+ rats were also observed to have smaller cardiac volumes than wild-type rats. Pressure-volume loop analysis showed that unaffected carriers had significantly higher afterload (arterial elastance 0.15±0.06 versus 0.27±0.08 mmHg·mL-1; p<0.001) and end-systolic elastance (0.28±0.07 versus 0.35±0.10 mmHg·mL-1; p=0.047) in addition to lower right ventricular pulmonary artery coupling (end-systolic elastance/arterial elastance 2.24±1.03 versus 1.36±0.37; p=0.006). During the 4-year follow-up period, two unaffected carriers developed pulmonary arterial hypertension, with normal N-terminal pro-brain natriuretic peptide and transthoracic echocardiography indices at diagnosis. CONCLUSION: Unaffected BMPR2 mutation carriers have an altered cardiac phenotype mimicked in Bmpr2Δ71Ex1/+ transgenic rats. Future efforts to establish an effective screening protocol for individuals at risk for developing pulmonary arterial hypertension warrant longer follow-up periods.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II , Echocardiography , Hypertension, Pulmonary , Adult , Animals , Female , Humans , Male , Middle Aged , Rats , Bone Morphogenetic Protein Receptors, Type II/genetics , Cardiac Catheterization , Case-Control Studies , Disease Models, Animal , Exercise Test , Genetic Predisposition to Disease , Heterozygote , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Magnetic Resonance Imaging , Phenotype , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/physiopathology , Rats, Transgenic
2.
Front Bioeng Biotechnol ; 11: 1229388, 2023.
Article in English | MEDLINE | ID: mdl-37849982

ABSTRACT

Introduction: Nucleus replacement has been proposed as a treatment to restore biomechanics and relieve pain in degenerate intervertebral discs (IVDs). Multiple nucleus replacement devices (NRDs) have been developed, however, none are currently used routinely in clinic. A better understanding of the interactions between NRDs and surrounding tissues may provide insight into the causes of implant failure and provide target properties for future NRD designs. The aim of this study was to non-invasively quantify 3D strains within the IVD through three stages of nucleus replacement surgery: intact, post-nuclectomy, and post-treatment. Methods: Digital volume correlation (DVC) combined with 9.4T MRI was used to measure strains in seven human cadaveric specimens (42 ± 18 years) when axially compressed to 1 kN. Nucleus material was removed from each specimen creating a cavity that was filled with a hydrogel-based NRD. Results: Nucleus removal led to loss of disc height (12.6 ± 4.4%, p = 0.004) which was restored post-treatment (within 5.3 ± 3.1% of the intact state, p > 0.05). Nuclectomy led to increased circumferential strains in the lateral annulus region compared to the intact state (-4.0 ± 3.4% vs. 1.7 ± 6.0%, p = 0.013), and increased maximum shear strains in the posterior annulus region (14.6 ± 1.7% vs. 19.4 ± 2.6%, p = 0.021). In both cases, the NRD was able to restore these strain values to their intact levels (p ≥ 0.192). Discussion: The ability of the NRD to restore IVD biomechanics and some strain types to intact state levels supports nucleus replacement surgery as a viable treatment option. The DVC-MRI method used in the present study could serve as a useful tool to assess future NRD designs to help improve performance in future clinical trials.

3.
Am J Respir Crit Care Med ; 208(8): 879-895, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37676930

ABSTRACT

Rationale: Immune dysregulation is a common feature of pulmonary arterial hypertension (PAH). Histone deacetylase (HDAC)-dependent transcriptional reprogramming epigenetically modulates immune homeostasis and is a novel disease-oriented approach in modern times. Objectives: To identify a novel functional link between HDAC and regulatory T cells (Tregs) in PAH, aiming to establish disease-modified biomarkers and therapeutic targets. Methods: Peripheral blood mononuclear cells were isolated from patients with idiopathic PAH (IPAH) and rodent models of pulmonary hypertension (PH): monocrotaline rats, Sugen5416-hypoxia rats, and Treg-depleted mice. HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to examine the immune modulatory effects in vivo, ex vivo, and in vitro. Measurements and Main Results: Increased HDAC expression was associated with reduced Foxp3+ Tregs and increased PD-1 (programmed cell death-1) signaling in peripheral blood mononuclear cells from patients with IPAH. SAHA differentially modified a cluster of epigenetic-sensitive genes and induced Foxp3+ Treg conversion in IPAH T cells. Rodent models recapitulated these epigenetic aberrations and T-cell dysfunction. SAHA attenuated PH phenotypes and restored FOXP3 transcription and Tregs in PH rats; interestingly, the effects were more profound in female rats. Selective depletion of CD25+ Tregs in Sugen5416-hypoxia mice neutralized the effects of SAHA. Furthermore, SAHA inhibited endothelial cytokine/chemokine release upon stimulation and subsequent immune chemotaxis. Conclusions: Our results indicated HDAC aberration was associated with Foxp3+ Treg deficiency and demonstrated an epigenetic-mediated mechanism underlying immune dysfunction in PAH. Restoration of Foxp3+ Tregs by HDAC inhibitors is a promising approach to resolve pulmonary vascular pathology, highlighting the potential benefit of developing epigenetic therapies for PAH.

4.
JOR Spine ; 6(2): e1232, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37361334

ABSTRACT

Background: Nuclectomy, also known as nucleotomy, is a percutaneous surgical procedure performed to remove nucleus material from the center of the disc. Multiple techniques have been considered to perform a nuclectomy, however, the advantages and disadvantages of each are not well understood. Aims: This in vitro biomechanical investigation on human cadaveric specimens aimed to quantitatively compare three nuclectomy techniques performed using an automated shaver, rongeurs, and laser. Material & Methods: Comparisons were made in terms of mass, volume and location of material removal, changes in disc height, and stiffness. Fifteen vertebra-disc-vertebra lumbar specimens were acquired from six donors (40 ± 13 years) and split into three groups. Before and after nucleotomy axial mechanical tests were performed and T2-weighted 9.4T MRIs were acquired for each specimen. Results: When using the automated shaver and rongeurs similar volumes of disc material were removed (2.51 ± 1.10% and 2.76 ± 1.39% of the total disc volume, respectively), while considerably less material was removed using the laser (0.12 ± 0.07%). Nuclectomy using the automated shaver and rongeurs significantly reduced the toe-region stiffness (p = 0.036), while the reduction in the linear region stiffness was significant only for the rongeurs group (p = 0.011). Post-nuclectomy, 60% of the rongeurs group specimens showed changes in the endplate profile while 40% from the laser group showed subchondral marrow changes. Discussion: From the MRIs, homogeneous cavities were seen in the center of the disc when using the automated shaver. When using rongeurs, material was removed non-homogeneously both from the nucleus and annulus regions. Laser ablation formed small and localized cavities suggesting that the technique is not suitable to remove large volumes of material unless it is developed and optimized for this application. Conclusion: The results demonstrate that both rongeurs and automated shavers can be used to remove large volumes of NP material but the reduced risk of collateral damage to surrounding tissues suggests that the automated shaver may be more suitable.

6.
Dis Model Mech ; 16(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36263604

ABSTRACT

There is an unmet need for treatments that prevent the progressive cardiac dysfunction following myocardial infarction. Mesenchymal stem/stromal cells (MSCs) are under investigation for cardiac repair; however, culture expansion prior to transplantation is hindering their homing and reparative abilities. Pharmacological mobilisation could be an alternative to MSC transplantation. Here, we report that endogenous MSCs mobilise into the circulation at day 5 post myocardial infarction in male Lewis rats. This mobilisation can be significantly increased by using a combination of the FDA-approved drugs mirabegron (ß3-adrenoceptor agonist) and AMD3100 (CXCR4 antagonist). Blinded cardiac magnetic resonance imaging analysis showed the treated group to have increased left ventricular ejection fraction and decreased end systolic volume at 5 weeks post myocardial infarction. The mobilised group had a significant decrease in plasma IL-6 and TNF-α levels, a decrease in interstitial fibrosis, and an increase in the border zone blood vessel density. Conditioned medium from blood-derived MSCs supported angiogenesis in vitro, as shown by tube formation and wound healing assays. Our data suggest a novel pharmacological strategy that enhances myocardial infarction-induced MSC mobilisation and improves cardiac function after myocardial infarction.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Rats , Animals , Male , Mesenchymal Stem Cell Transplantation/methods , Stroke Volume , Ventricular Function, Left , Rats, Inbred Lew , Myocardial Infarction/pathology
7.
Front Bioeng Biotechnol ; 9: 660013, 2021.
Article in English | MEDLINE | ID: mdl-34222211

ABSTRACT

Finite element models are useful for investigating internal intervertebral disc (IVD) behaviours without using disruptive experimental techniques. Simplified geometries are commonly used to reduce computational time or because internal geometries cannot be acquired from CT scans. This study aimed to (1) investigate the effect of altered geometries both at endplates and the nucleus-anulus boundary on model response, and (2) to investigate model sensitivity to material and geometric inputs, and different modelling approaches (graduated or consistent fibre bundle angles and glued or cohesive inter-lamellar contact). Six models were developed from 9.4 T MRIs of bovine IVDs. Models had two variations of endplate geometry (a simple curved profile from the centre of the disc to the periphery, and precise geometry segmented from MRIs), and three variations of NP-AF boundary (linear, curved, and segmented). Models were subjected to axial compressive loading (to 0.86 mm at a strain rate of 0.1/s) and the effect on stiffness and strain distributions, and the sensitivity to modelling approaches was investigated. The model with the most complex geometry (segmented endplates, curved NP-AF boundary) was 3.1 times stiffer than the model with the simplest geometry (curved endplates, linear NP-AF boundary), although this difference may be exaggerated since segmenting the endplates in the complex geometry models resulted in a shorter average disc height. Peak strains were close to the endplates at locations of high curvature in the segmented endplate models which were not captured in the curved endplate models. Differences were also seen in sensitivity to material properties, graduated fibre angles, cohesive rather than glued inter-lamellar contact, and NP:AF ratios. These results show that FE modellers must take care to ensure geometries are realistic so that load is distributed and passes through IVDs accurately.

8.
Brain ; 144(5): 1526-1541, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34148071

ABSTRACT

Alzheimer's disease, characterized by brain deposits of amyloid-ß plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-ß levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-ß and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-ß load, due to increased clearance and degradation of amyloid-ß by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/drug effects , Annexin A1/pharmacology , Blood-Brain Barrier/drug effects , Brain/drug effects , Animals , Blood-Brain Barrier/pathology , Brain/pathology , Capillary Permeability , Female , Humans , Male , Mice , Mice, Transgenic
9.
Sci Rep ; 11(1): 12927, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155289

ABSTRACT

Neurovascular injury is often observed in traumatic brain injury (TBI). However, the relationship between mechanical forces and vascular injury is still unclear. A key question is whether the complex anatomy of vasculature plays a role in increasing forces in cerebral vessels and producing damage. We developed a high-fidelity multiscale finite element model of the rat brain featuring a detailed definition of the angioarchitecture. Controlled cortical impacts were performed experimentally and in-silico. The model was able to predict the pattern of blood-brain barrier damage. We found strong correlation between the area of fibrinogen extravasation and the brain area where axial strain in vessels exceeds 0.14. Our results showed that adjacent vessels can sustain profoundly different axial stresses depending on their alignment with the principal direction of stress in parenchyma, with a better alignment leading to larger stresses in vessels. We also found a strong correlation between axial stress in vessels and the shearing component of the stress wave in parenchyma. Our multiscale computational approach explains the unrecognised role of the vascular anatomy and shear stresses in producing distinct distribution of large forces in vasculature. This new understanding can contribute to improving TBI diagnosis and prevention.


Subject(s)
Brain Injuries, Traumatic/etiology , Brain/blood supply , Brain/pathology , Disease Models, Animal , Models, Biological , Stress, Mechanical , Animals , Biomarkers , Brain/diagnostic imaging , Cerebral Angiography , Disease Susceptibility , Rats
10.
Brain ; 144(1): 70-91, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33454735

ABSTRACT

The relationship between biomechanical forces and neuropathology is key to understanding traumatic brain injury. White matter tracts are damaged by high shear forces during impact, resulting in axonal injury, a key determinant of long-term clinical outcomes. However, the relationship between biomechanical forces and patterns of white matter injuries, associated with persistent diffusion MRI abnormalities, is poorly understood. This limits the ability to predict the severity of head injuries and the design of appropriate protection. Our previously developed human finite element model of head injury predicted the location of post-traumatic neurodegeneration. A similar rat model now allows us to experimentally test whether strain patterns calculated by the model predicts in vivo MRI and histology changes. Using a controlled cortical impact, mild and moderate injuries (1 and 2 mm) were performed. Focal and axonal injuries were quantified with volumetric and diffusion 9.4 T MRI at 2 weeks post injury. Detailed analysis of the corpus callosum was conducted using multi-shell diffusion MRI and histopathology. Microglia and astrocyte density, including process parameters, along with white matter structural integrity and neurofilament expression were determined by quantitative immunohistochemistry. Linear mixed effects regression analyses for strain and strain rate with the employed outcome measures were used to ascertain how well immediate biomechanics could explain MRI and histology changes. The spatial pattern of mechanical strain and strain rate in the injured cortex shows good agreement with the probability maps of focal lesions derived from volumetric MRI. Diffusion metrics showed abnormalities in the corpus callosum, indicating white matter changes in the segments subjected to high strain, as predicted by the model. The same segments also exhibited a severity-dependent increase in glia cell density, white matter thinning and reduced neurofilament expression. Linear mixed effects regression analyses showed that mechanical strain and strain rate were significant predictors of in vivo MRI and histology changes. Specifically, strain and strain rate respectively explained 33% and 28% of the reduction in fractional anisotropy, 51% and 29% of the change in neurofilament expression and 51% and 30% of microglia density changes. The work provides evidence that strain and strain rate in the first milliseconds after injury are important factors in determining patterns of glial and axonal injury and serve as experimental validators of our computational model of traumatic brain injury. Our results provide support for the use of this model in understanding the relationship of biomechanics and neuropathology and can guide the development of head protection systems, such as airbags and helmets.


Subject(s)
Axons/pathology , Biomechanical Phenomena , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Models, Neurological , White Matter/diagnostic imaging , White Matter/pathology , Animals , Astrocytes/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Finite Element Analysis , Male , Microglia/pathology , Rats, Sprague-Dawley
11.
Cardiovasc Res ; 117(4): 1078-1090, 2021 03 21.
Article in English | MEDLINE | ID: mdl-32402067

ABSTRACT

AIMS: Conflicting data exist supporting differing mechanisms for sustaining ventricular fibrillation (VF), ranging from disorganized multiple-wavelet activation to organized rotational activities (RAs). Abnormal gap junction (GJ) coupling and fibrosis are important in initiation and maintenance of VF. We investigated whether differing ventricular fibrosis patterns and the degree of GJ coupling affected the underlying VF mechanism. METHODS AND RESULTS: Optical mapping of 65 Langendorff-perfused rat hearts was performed to study VF mechanisms in control hearts with acute GJ modulation, and separately in three differing chronic ventricular fibrosis models; compact fibrosis (CF), diffuse fibrosis (DiF), and patchy fibrosis (PF). VF dynamics were quantified with phase mapping and frequency dominance index (FDI) analysis, a power ratio of the highest amplitude dominant frequency in the cardiac frequency spectrum. Enhanced GJ coupling with rotigaptide (n = 10) progressively organized fibrillation in a concentration-dependent manner; increasing FDI (0 nM: 0.53 ± 0.04, 80 nM: 0.78 ± 0.03, P < 0.001), increasing RA-sustained VF time (0 nM: 44 ± 6%, 80 nM: 94 ± 2%, P < 0.001), and stabilized RAs (maximum rotations for an RA; 0 nM: 5.4 ± 0.5, 80 nM: 48.2 ± 12.3, P < 0.001). GJ uncoupling with carbenoxolone progressively disorganized VF; the FDI decreased (0 µM: 0.60 ± 0.05, 50 µM: 0.17 ± 0.03, P < 0.001) and RA-sustained VF time decreased (0 µM: 61 ± 9%, 50 µM: 3 ± 2%, P < 0.001). In CF, VF activity was disorganized and the RA-sustained VF time was the lowest (CF: 27 ± 7% vs. PF: 75 ± 5%, P < 0.001). Global fibrillatory organization measured by FDI was highest in PF (PF: 0.67 ± 0.05 vs. CF: 0.33 ± 0.03, P < 0.001). PF harboured the longest duration and most spatially stable RAs (patchy: 1411 ± 266 ms vs. compact: 354 ± 38 ms, P < 0.001). DiF (n = 11) exhibited an intermediately organized VF pattern, sustained by a combination of multiple-wavelets and short-lived RAs. CONCLUSION: The degree of GJ coupling and pattern of fibrosis influences the mechanism sustaining VF. There is a continuous spectrum of organization in VF, ranging between globally organized fibrillation sustained by stable RAs and disorganized, possibly multiple-wavelet driven fibrillation with no RAs.


Subject(s)
Action Potentials , Gap Junctions/pathology , Heart Ventricles/pathology , Ventricular Fibrillation/pathology , Animals , Disease Models, Animal , Electrocardiography , Fibrosis , Heart Rate , Heart Ventricles/physiopathology , Isolated Heart Preparation , Models, Cardiovascular , Rats, Sprague-Dawley , Time Factors , Ventricular Fibrillation/physiopathology , Voltage-Sensitive Dye Imaging
12.
J Cell Mol Med ; 25(1): 229-243, 2021 01.
Article in English | MEDLINE | ID: mdl-33249764

ABSTRACT

Heart failure is the common final pathway of several cardiovascular conditions and a major cause of morbidity and mortality worldwide. Aberrant activation of the adaptive immune system in response to myocardial necrosis has recently been implicated in the development of heart failure. The ß-adrenergic agonist isoproterenol hydrochloride is used for its cardiac effects in a variety of different dosing regimens with high doses causing acute cardiomyocyte necrosis. To assess whether isoproterenol-induced cardiomyocyte necrosis triggers an adaptive immune response against the heart, we treated C57BL/6J mice with a single intraperitoneal injection of isoproterenol. We confirmed tissue damage reminiscent of human type 2 myocardial infarction. This is followed by an adaptive immune response targeting the heart as demonstrated by the activation of T cells, the presence of anti-heart auto-antibodies in the serum as late as 12 weeks after initial challenge and IgG deposition in the myocardium. All of these are hallmark signs of an established autoimmune response. Adoptive transfer of splenocytes from isoproterenol-treated mice induces left ventricular dilation and impairs cardiac function in healthy recipients. In summary, a single administration of a high dose of isoproterenol is a suitable high-throughput model for future studies of the pathological mechanisms of anti-heart autoimmunity and to test potential immunomodulatory therapeutic approaches.


Subject(s)
Adaptive Immunity , Myocardial Infarction/immunology , Myocardium/pathology , Adoptive Transfer , Animals , Dendritic Cells/immunology , Disease Models, Animal , Female , Fibrosis , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Isoproterenol , Leukocyte Common Antigens/metabolism , Male , Mice, Inbred C57BL , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necrosis , Organ Specificity , Spleen/immunology , Systole , T-Lymphocytes, Helper-Inducer/immunology , Vasodilation
13.
IEEE Trans Med Imaging ; 39(12): 4335-4345, 2020 12.
Article in English | MEDLINE | ID: mdl-32804645

ABSTRACT

Non-invasive quantification of functional parameters of the cardiovascular system, in particular the heart, remains very challenging with current imaging techniques. This aspect is mainly due to the fact, that the spatio-temporal resolution of current imaging methods, such as Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET), does not offer the desired data repetition rates in the context of real-time data acquisition and thus, can cause artifacts and misinterpretations in accelerated data acquisition approaches. We present a fast non-invasive and quantitative dual-modal in situ cardiovascular assessment using a hybrid imaging system which combines the new imaging modality Magnetic Particle Imaging (MPI) and MRI. This pre-clinical hybrid imaging system provides either a 0.5 T homogeneous B0 field for MRI or a 2.2 T/m gradient field featuring a Field-Free-Point for MPI. A comprehensive coil system allows in both imaging modes for spatial encoding, signal excitation and reception. In this work, 3-dimensional anatomical information acquired with MRI is combined with in situ sequentially acquired time-resolved 3D (i.e. 3D + t) MPI bolus tracking of superparamagnetic iron oxide nanoparticles. MPI data were acquired during a 21 [Formula: see text] (40 µ mol(Fe)/kgBW) bolus tail vein injection under free-breathing with an ungated and non-triggered MPI scan with a repetition rate of 46 volumes per seconds. We successfully determined quantitative hemodynamics as 3D + t velocity vector estimations of a beating rat's heart by analyzing 3 seconds of 3D + t MPI image data. The used hybrid system allows for MR-based MPI Field-of-View planning and cardiac cross-sectional anatomy analysis, precise co-registration of dual-modal datasets, as well as for MPI-based hemodynamic functional analysis using an optical flow technique. We present the first in-vivo results of a new methodology, allowing for fast, non-invasive, quantitative and in situ hybrid cardiovascular assessment, showing its potential for future clinical applications.


Subject(s)
Multimodal Imaging , Tomography, X-Ray Computed , Animals , Cross-Sectional Studies , Feasibility Studies , Hemodynamics , Magnetic Resonance Imaging , Rats
14.
Cancers (Basel) ; 12(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604836

ABSTRACT

The monocarboxylate transporter 1 (MCT1) is a key element in tumor cell metabolism and inhibition of MCT1 with AZD3965 is undergoing clinical trials. We aimed to investigate nutrient fluxes associated with MCT1 inhibition by AZD3965 to identify possible biomarkers of drug action. We synthesized an 18F-labeled lactate analogue, [18F]-S-fluorolactate ([18F]-S-FL), that was used alongside [18F]fluorodeoxyglucose ([18F]FDG), and 13C-labeled glucose and lactate, to investigate the modulation of metabolism with AZD3965 in diffuse large B-cell lymphoma models in NOD/SCID mice. Comparative analysis of glucose and lactate-based probes showed a preference for glycolytic metabolism in vitro, whereas in vivo, both glucose and lactate were used as metabolic fuel. While intratumoral L-[1-13C]lactate and [18F]-S-FL were unchanged or lower at early (5 or 30 min) timepoints, these variables were higher compared to vehicle controls at 4 h following treatment with AZD3965, which indicates that inhibition of MCT1-mediated lactate import is reversed over time. Nonetheless, AZD3965 treatment impaired DLBCL tumor growth in mice. This was hypothesized to be a consequence of metabolic strain, as AZD3965 treatment showed a reduction in glycolytic intermediates and inhibition of the TCA cycle likely due to downregulated PDH activity. Glucose ([18F]FDG and D-[13C6]glucose) and lactate-based probes ([18F]-S-FL and L-[1-13C]lactate) can be successfully used as biomarkers for AZD3965 treatment.

15.
Theranostics ; 10(6): 2659-2674, 2020.
Article in English | MEDLINE | ID: mdl-32194827

ABSTRACT

Gadolinium-based magnetic resonance imaging contrast agents can provide information regarding neuronal function, provided that these agents can cross the neuronal cell membrane. Such contrast agents are normally restricted to extracellular domains, however, by attaching cationic fluorescent dyes, they can be made cell-permeable and allow for both optical and magnetic resonance detection. To reach neurons, these agents also need to cross the blood-brain barrier. Focused ultrasound combined with microbubbles has been shown to enhance the permeability of this barrier, allowing molecules into the brain non-invasively, locally and transiently. The goal of this study was to investigate whether combining fluorescent rhodamine with a gadolinium complex would form a dual-modal contrast agent that could label neurons in vivo when delivered to the mouse brain with focused ultrasound and microbubbles. Methods: Gadolinium complexes were combined with a fluorescent, cationic rhodamine unit to form probes with fluorescence and relaxivity properties suitable for in vivo applications. The left hemisphere of female C57bl/6 mice (8-10 weeks old; 19.07 ± 1.56 g; n = 16) was treated with ultrasound (centre frequency: 1 MHz, peak-negative pressure: 0.35 MPa, pulse length: 10 ms, repetition frequency: 0.5 Hz) while intravenously injecting SonoVue microbubbles and either the 1 kDa Gd(rhodamine-pip-DO3A) complex or a conventionally-used lysine-fixable Texas Red® 3 kDa dextran. The opposite right hemisphere was used as a non-treated control region. Brains were then extracted and either sectioned and imaged via fluorescence or confocal microscopy or imaged using a 9.4 T magnetic resonance imaging scanner. Brain slices were stained for neurons (NeuN), microglia (Iba1) and astrocytes (GFAP) to investigate the cellular localization of the probes. Results: Rhodamine fluorescence was detected in the left hemisphere of all ultrasound treated mice, while none was detected in the right control hemisphere. Cellular uptake of Gd(rhodamine-pip-DO3A) was observed in all the treated regions with a uniform distribution (coefficient of variation = 0.4 ± 0.05). Uptake was confirmed within neurons, whereas the probe did not co-localize with microglia and astrocytes. Compared to the dextran molecule, Gd(rhodamine-pip-DO3A) distributed more homogeneously and was less concentrated around blood vessels. Furthermore, the dextran molecule was found to accumulate unselectively in microglia as well as neurons, whereas our probe was only taken up by neurons. Gd(rhodamine-pip-DO3A) was detected via magnetic resonance imaging ex vivo in similar regions to where fluorescence was detected. Conclusion: We have introduced a method to image neurons with a dual-modal imaging agent delivered non-invasively and locally to the brain using focused ultrasound and microbubbles. When delivered to the mouse brain, the agent distributed homogeneously and was only uptaken by neurons; in contrast, conventionally used dextran distributed heterogeneously and was uptaken by microglia as well as neurons. This result indicates that our probe labels neurons without microglial involvement and in addition the probe was found to be detectable via both ex vivo MRI and fluorescence. Labeling neurons with such dual-modal agents could facilitate the study of neuronal morphology and physiology using the advantages of both imaging modalities.


Subject(s)
Brain/diagnostic imaging , Contrast Media/pharmacokinetics , Gadolinium/pharmacokinetics , Rhodamines/pharmacokinetics , Animals , Blood-Brain Barrier , Female , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Microbubbles , Optical Imaging , Ultrasonography
16.
Dalton Trans ; 49(15): 4732-4740, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32207493

ABSTRACT

Global rates of diabetes mellitus are increasing, and treatment of the disease consumes a growing proportion of healthcare spending across the world. Pancreatic ß-cells, responsible for insulin production, decline in mass in type 1 and, to a more limited degree, in type 2 diabetes. However, the extent and rate of loss in both diseases differs between patients resulting in the need for the development of novel diagnostic tools, which could quantitatively assess changes in mass of ß-cells over time and potentially lead to earlier diagnosis and improved treatments. Exendin-4, a potent analogue of glucagon-like-peptide 1 (GLP-1), binds to the receptor GLP-1R, whose expression is enriched in ß-cells. GLP-1R has thus been used in the past as a means of targeting probes for a wide variety of imaging modalities to the endocrine pancreas. However, exendin-4 conjugates designed specifically for MRI contrast agents are an under-explored area. In the present work, the synthesis and characterization of an exendin-4-dota(ga)-Gd(iii) complex, GdEx, is reported, along with its in vivo behaviour in healthy and in ß-cell-depleted C57BL/6J mice. Compared to the ubiquitous probe, [Gd(dota)]-, GdEx shows selective uptake by the pancreas with a marked decrease in accumulation observed after the loss of ß-cells elicited by deleting the microRNA processing enzyme, DICER. These results open up pathways towards the development of other targeted MRI contrast agents based on similar chemistry methodology.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Exenatide/chemistry , Gadolinium/chemistry , Insulin-Secreting Cells/pathology , Magnetic Resonance Imaging , Pancreas/diagnostic imaging , Radiopharmaceuticals/chemistry , Animals , Contrast Media/chemical synthesis , Coordination Complexes/chemical synthesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Radiopharmaceuticals/chemical synthesis
17.
Front Bioeng Biotechnol ; 8: 610907, 2020.
Article in English | MEDLINE | ID: mdl-33553116

ABSTRACT

The intervertebral disc (IVD) plays a main role in absorbing and transmitting loads within the spinal column. Degeneration alters the structural integrity of the IVDs and causes pain, especially in the lumbar region. The objective of this study was to investigate non-invasively the effect of degeneration on human 3D lumbar IVD strains (n = 8) and the mechanism of spinal failure (n = 10) under pure axial compression using digital volume correlation (DVC) and 9.4 Tesla magnetic resonance imaging (MRI). Degenerate IVDs had higher (p < 0.05) axial strains (58% higher), maximum 3D compressive strains (43% higher), and maximum 3D shear strains (41% higher), in comparison to the non-degenerate IVDs, particularly in the lateral and posterior annulus. In both degenerate and non-degenerate IVDs, peak tensile and shear strains were observed close to the endplates. Inward bulging of the inner annulus was observed in all degenerate IVDs causing an increase in the AF compressive, tensile, and shear strains at the site of inward bulge, which may predispose it to circumferential tears (delamination). The endplate is the spine's "weak link" in pure axial compression, and the mechanism of human vertebral fracture is associated with disc degeneration. In non-degenerate IVDs the locations of failure were close to the endplate centroid, whereas in degenerate IVDs they were in peripheral regions. These findings advance the state of knowledge on mechanical changes during degeneration of the IVD, which help reduce the risk of injury, optimize treatments, and improve spinal implant designs. Additionally, these new data can be used to validate computational models.

18.
Dis Model Mech ; 12(8)2019 08 16.
Article in English | MEDLINE | ID: mdl-31324689

ABSTRACT

Hemorrhagic myocarditis is a potentially fatal complication of excessive levels of systemic inflammation. It has been reported in viral infection, but is also possible in systemic autoimmunity. Epicutaneous treatment of mice with the Toll-like receptor 7 (TLR-7) agonist Resiquimod induces auto-antibodies and systemic tissue damage, including in the heart, and is used as an inducible mouse model of systemic lupus erythematosus (SLE). Here, we show that overactivation of the TLR-7 pathway of viral recognition by Resiquimod treatment of CFN mice induces severe thrombocytopenia and internal bleeding, which manifests most prominently as hemorrhagic myocarditis. We optimized a cardiac magnetic resonance (CMR) tissue mapping approach for the in vivo detection of diffuse infiltration, fibrosis and hemorrhages using a combination of T1, T2 and T2* relaxation times, and compared results with ex vivo histopathology of cardiac sections corresponding to CMR tissue maps. This allowed detailed correlation between in vivo CMR parameters and ex vivo histopathology, and confirmed the need to include T2* measurements to detect tissue iron for accurate interpretation of pathology associated with CMR parameter changes. In summary, we provide detailed histological and in vivo imaging-based characterization of acute hemorrhagic myocarditis as an acute cardiac complication in the mouse model of Resiquimod-induced SLE, and a refined CMR protocol to allow non-invasive longitudinal in vivo studies of heart involvement in acute inflammation. We propose that adding T2* mapping to CMR protocols for myocarditis diagnosis improves diagnostic sensitivity and interpretation of disease mechanisms.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Hemorrhage/diagnostic imaging , Multiparametric Magnetic Resonance Imaging , Myocarditis/diagnostic imaging , Toll-Like Receptor 7/agonists , Animals , Female , Hemorrhage/complications , Hemorrhage/pathology , Humans , Imidazoles , Inflammation/complications , Inflammation/pathology , Iron/metabolism , Male , Mice, Inbred C57BL , Myocarditis/complications , Myocarditis/pathology , Thrombocytopenia/complications , Thrombocytopenia/pathology
19.
Cancer Cell ; 34(4): 596-610.e11, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30300581

ABSTRACT

Chimeric antigen receptor anti-CD19 (CAR19)-T cell immunotherapy-induced clinical remissions in CD19+ B cell lymphomas are often short lived. We tested whether CAR19-engineering of the CD1d-restricted invariant natural killer T (iNKT) cells would result in enhanced anti-lymphoma activity. CAR19-iNKT cells co-operatively activated by CD1d- and CAR19-CD19-dependent interactions are more effective than CAR19-T cells against CD1d-expressing lymphomas in vitro and in vivo. The swifter in vivo anti-lymphoma activity of CAR19-iNKT cells and their enhanced ability to eradicate brain lymphomas underpinned an improved tumor-free and overall survival. CD1D transcriptional de-repression by all-trans retinoic acid results in further enhanced cytotoxicity of CAR19-iNKT cells against CD19+ chronic lymphocytic leukemia cells. Thus, iNKT cells are a highly efficient platform for CAR-based immunotherapy of lymphomas and possibly other CD1d-expressing cancers.


Subject(s)
Antigens, CD1d/genetics , Cell- and Tissue-Based Therapy , Lymphoma/drug therapy , Natural Killer T-Cells/cytology , Animals , Antigens, CD19/genetics , Antigens, CD19/immunology , Antigens, CD1d/immunology , Humans , Immunotherapy/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphoma/immunology , Mice , Natural Killer T-Cells/immunology
20.
Dis Model Mech ; 10(3): 259-270, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28250051

ABSTRACT

Systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8) agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity.


Subject(s)
Autoimmunity/drug effects , Cardiomyopathy, Dilated/chemically induced , Imidazoles/adverse effects , Myocarditis/chemically induced , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Adaptive Immunity/drug effects , Adoptive Transfer , Animals , Autoantibodies/blood , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/immunology , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Female , Genetic Variation , Heart Function Tests , Immunity, Cellular/drug effects , Inflammation/pathology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Male , Mutation/genetics , Myocarditis/complications , Myocarditis/immunology , Myocarditis/physiopathology , Myocardium/pathology , Spleen/pathology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL