Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Front Cell Neurosci ; 16: 955550, 2022.
Article in English | MEDLINE | ID: mdl-35959470

ABSTRACT

The roof of the fourth ventricle (4V) is located on the ventral part of the cerebellum, a region with abundant vascularization and cell heterogeneity that includes tanycyte-like cells that define a peculiar glial niche known as ventromedial cord. This cord is composed of a group of biciliated cells that run along the midline, contacting the ventricular lumen and the subventricular zone. Although the complex morphology of the glial cells composing the cord resembles to tanycytes, cells which are known for its proliferative capacity, scarce or non-proliferative activity has been evidenced in this area. The subventricular zone of the cerebellum includes astrocytes, oligodendrocytes, and neurons whose function has not been extensively studied. This review describes to some extent the phenotypic, morphological, and functional characteristics of the cells that integrate the roof of the 4V, primarily from rodent brains.

2.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 113-117, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34933725

ABSTRACT

Chitosan and poly(3-hydroxybutyrate) are non-toxic, biodegradable, and biocompatible polymers extensively used in regenerative medicine. However, it is unknown whether the chemical combination of these polymers can produce a biomaterial that induces an appropriate cellular response in vitro in mammalian cells. This study aimed to test the ability of a novel salt-leached polyurethane scaffold of chitosan grafted with poly(3-hydroxybutyrate) to support the growth of three mammalian cell lines of different origin: a) HEK-293 cells, b) i28 mouse myoblasts, and c) human dermal fibroblasts. The viability of the cells was assessed by either evaluation of their capacity to maintain the expression of the green fluorescent protein by adenoviral transduction or by esterase activity and plasma membrane integrity. The results indicated that the three cell lines attached well to the scaffold; however, when i28 cells were induced to differentiate, they did not produce morphologically distinct myofibers, and cell growth ceased. In conclusion, the findings reveal that, altogether, these observations suggest that this foam scaffold supports cell growth and proliferation but may not apply to all cell types. Hence, one crucial question yet to be resolved is a poly (saccharide-ester-urethane) derivative with a nano-topography that elicits a similar cellular response for different biological environments.


Subject(s)
Polyesters/chemistry , Polysaccharides/chemistry , Polyurethanes/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Myoblasts/cytology , Myoblasts/metabolism
3.
J Neurosci Methods ; 350: 109048, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33359224

ABSTRACT

BACKGROUND: The CLARITY technique enables researchers to visualize different neuronal connections along the nervous system including the somatosensory system. NEW METHOD: The present work describes the antero-lateral and dorsal column pathways until the thalamic and cortical stations, as well as descending oxytocinergic and vasopressinergic innervations by means of combined CLARITY, neuronal tracing, and immunofluorescence techniques. We used male Sprague-Dawley rats of 13, 30, and 60 days. RESULTS: The main results are as follows: A) CLARITY is a reliable technique that can be combined with fluorescent neuronal tracers and immunofluorescence techniques without major procedure modifications; B) at spinal level, some primary afferent fibers were labeled by CGRP, as well as the presence of neuronal populations that simultaneously project to the gracile and ventral posterolateral thalamic nuclei; C) corticothalamic connections were visible when retrograde tracers were injected at thalamic level; D) oxytocin receptors were expressed in the spinal dorsal horn by GABAergic-positive neurons, reinforcing previous outcomes about the possible mechanism for oxytocin blocking the primary afferent sensory input. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: The CLARITY technique lets us observe in a transparent way the entire processed tissue compared with classical histological methods. CLARITY is a potentially useful tool to describe neuroanatomical structures and their neurochemical stratus.


Subject(s)
Neurons , Ventral Thalamic Nuclei , Animals , Axons , Fluorescent Antibody Technique , Male , Rats , Rats, Sprague-Dawley
4.
Neuroscience ; 439: 211-229, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31689390

ABSTRACT

The cerebellum harbors a specialized area on the roof of the fourth ventricle that is composed of glial cells and neurons that interface with the cerebrospinal fluid. This region includes the so-called ventromedial cord (VMC), which is composed of cells that are glial fibrillary acidic protein (GFAP)-positive and nestin-positive and distributes along the midline in association with blood vessels. We hypothesized that these cells should compare to GFAP and nestin-positive cells that are known to exist in other areas of the brain, which undergo proliferation and differentiation under hypoxic conditions. Thus, we tested whether cells of the VMC would display a similar reaction to hypoxic preconditioning (HPC). Indeed, we found that the VMC does respond to HPC by reorganizing its cellular components before it gradually returns to its basal state after about a week. This response we documented by monitoring global changes in the expression of GFAP-EGFP in transgenic mice, using light-sheet fluorescence microscopy (LSFM) revealed a dramatic loss of EGFP upon HPC, and was paralleled by retraction of Bergmann glial cell processes. This EGFP loss was supported by western blot analysis, which also showed a loss in the astrocyte-markers GFAP and ALDH1L1. On the other hand, other cell-markers appeared to be upregulated in the blots (including nestin, NeuN, and Iba1). Finally, we found that HPC does not remarkably affect the incorporation of BrdU into cells on the cerebellum, but strongly augments BrdU incorporation into periventricular cells on the floor of the fourth ventricle over the adjacent medulla.


Subject(s)
Fourth Ventricle , Neuroglia , Animals , Astrocytes/metabolism , Fourth Ventricle/metabolism , Glial Fibrillary Acidic Protein/metabolism , Mice , Neuroglia/metabolism , Neurons/metabolism
5.
Sci Rep ; 7: 40768, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106069

ABSTRACT

The periventricular zone of cerebellum is a germinative niche during the embryonic development, nevertheless its structural organization and functional implications in adult have not been widely studied. Here we disclose the presence of two novel clusters of cells in that area. The first one was named the subventricular cellular cluster (SVCC) and is composed of cells that express glial and neuronal markers. The second was named the ventromedial cord (VMC) and appears as a streak of biciliated cells with microvillosities facing the ventricle, that includes GFAP+ and nestin+ cells organized along the periventricular vasculature. The dorsal limit of the SVCC is associated with myelinated axons of neurons of unknown origin. This paper describes the characteristics and organization of these groups of cells. They can be observed from late embryonic development in the transgenic mouse line GFAP-GFP. The SVCC and VMC expand during early postnatal development but are restricted to the central area of the ventricle in adulthood. We did not find evidence of cell proliferation, cell migration or the presence of fenestrated blood vessels. These findings provide new insights into the knowledge of the cellular composition and structural organization of the periventricular zone of cerebellum.


Subject(s)
Cerebellum/cytology , Cerebellum/metabolism , Hypothalamus/cytology , Hypothalamus/metabolism , Animals , Biomarkers , Cell Proliferation , Cerebellum/physiopathology , Cerebellum/ultrastructure , Electrophysiological Phenomena , Fluorescent Antibody Technique , Genes, Reporter , Hypothalamus/physiopathology , Hypothalamus/ultrastructure , Male , Mice , Mice, Transgenic , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL