Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
ACS Appl Mater Interfaces ; 16(40): 53419-53434, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39329195

ABSTRACT

Barrier membranes (BM) for guided bone regeneration (GBR) aim to support the osteogenic healing process of a defined bony defect by excluding epithelial (gingival) ingrowth and enabling osteoprogenitor and stem cells to proliferate and differentiate into bone tissue. Currently, the most widely used membranes for these approaches are collagen-derived, and there is a discrepancy in defining the optimal collagen membrane in terms of biocompatibility, strength, and degradation rates. Motivated by these clinical observations, we designed a collagen-free membrane based on l-valine-co-l-phenylalanine-poly(ester urea) (PEU) copolymer via electrospinning. Degradation and mechanical properties of these membranes were performed on as-spun and water-aged samples. Alveolar-bone-derived stem cells (AvBMSCs) were seeded on the PEU BM to assess their cell compatibility and osteogenic characteristics, including cell viability, attachment/spreading, proliferation, and mineralized tissue-associated gene expression. In vivo, PEU BMs were subcutaneously implanted in rats to evaluate their potential to cause inflammatory responses and facilitate angiogenesis. Finally, critical-size calvarial defects and a periodontal model were used to assess the regenerative capacity of the electrospun PEU BM compared to clinically available Cytoflex synthetic membranes. PEU BM demonstrated equal biocompatibility to Cytoflex with superior mechanical performance in strength and elasticity. Additionally, after 14 days, PEU BM exhibited a higher expression of BGLAP/osteocalcin and superior in vivo performance-less inflammation and increased CD31 and VWF expression over time. When placed in critical-sized defects in the calvaria of rats, the PEU BM led to robust bone formation with high expression of osteogenesis and angiogenesis markers. Moreover, our membrane enhanced alveolar bone and cementum regeneration in an established periodontal model after 8 weeks. We demonstrate that the PEU BM exhibits favorable clinical properties, including mechanical stability, cytocompatibility, and facilitated bone formation in vitro and in vivo. This highlights its suitability for GBR in periodontal and craniofacial bone defects.


Subject(s)
Bone Regeneration , Polyesters , Animals , Bone Regeneration/drug effects , Rats , Polyesters/chemistry , Polyesters/pharmacology , Membranes, Artificial , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Osteogenesis/drug effects , Rats, Sprague-Dawley , Urea/chemistry , Urea/pharmacology , Male , Humans , Amino Acids/chemistry , Amino Acids/pharmacology , Guided Tissue Regeneration/methods
2.
Article in English | MEDLINE | ID: mdl-39238099

ABSTRACT

BACKGROUND: Rib fractures are a common traumatic injury affecting more than 350,000 patients a year. Early stabilization has shown to be effective in reducing pulmonary complications. Platelet-rich plasma (PRP) is a growth factor-rich blood product known to improve soft tissue and bone healing. We hypothesized that the addition of PRP to a rib fracture site would accelerate callus formation and improve callus strength. METHODS: Platelet-rich plasma was isolated from pooled Lewis rat blood and quantified. Thirty-two Lewis rats underwent fracture of the sixth rib and were treated with 100 µL PRP (1 × 106 platelets/µL) or saline. At 2 weeks, ribs were harvested and underwent a 3-point bend, x-ray, and microcomputed tomography, and callus sections were stained with 4',6-diamidino-2-phenylindole and Alcian blue and picrosirius red. At 6 weeks, ribs were harvested and underwent a 3-point bend test, x-ray, microcomputed tomography, and Alcian blue and picrosirius red staining. RESULTS: At 2 weeks, PRP increased callus diameter (9.3 mm vs. 4.3 mm, p = 0.0002), callus index (4.5 vs. 2.1, p = 0.0002), bone volume/total volume (0.0551 vs. 0.0361, p = 0.0024), cellularization (2,364 vs. 1,196, p < 0.0001), and cartilage (12.12% vs. 3.11%, p = 0.0001) and collagen (6.64% vs. 4.85%, p = 0.0087) content compared with controls. At 6 weeks, PRP increased fracture callus diameter (5.0 mm vs. 4.0 mm, 0.0466), callus index (2.5 vs. 2.0, p = 0.0466), BV/TV (0.0415 vs. 0.0308, p = 0.0358), and higher cartilage (8.21% vs. 3.26%, p < 0.0001) and collagen (37.61% vs. 28.00%, p = 0.0022) content compared with controls. At 6 weeks, PRP samples trended toward improved mechanical characteristics; however, these results did not reach significance (p > 0.05). CONCLUSION: Rib fractures are a common injury, and accelerated stabilization could improve clinical outcomes. Platelet-rich plasma significantly increased callus size, calcium deposition, and cartilage and collagen content at 2 and 6 weeks and trended toward improved strength and toughness on mechanical analysis at 6 weeks compared with controls, although this did not reach significance. These findings suggest that PRP may be a useful adjunct to accelerate and improve fracture healing in high-risk patients.

3.
Adv Healthc Mater ; : e2402113, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132866

ABSTRACT

Microneedle array patches (MAPs) are extensively studied for transdermal drug delivery. Additive manufacturing enables precise control over MAP customization and rapid fabrication. However, the scope of 3D-printable, bioresorbable materials is limited. Dexamethasone (DXM) is widely used to manage inflammation and pain, but its application is limited by systemic side effects. Thus, it is crucial to achieve high local drug concentrations while maintaining low serum levels. Here, poly(propylene fumarate-co-propylene succinate) oligomers are fabricated into DXM-loaded, bioresorbable MAPs via continuous liquid interface production 3D printing. Thiol-ene click chemistry yields MAPs with tailorable mechanical and degradation properties. DXM-loaded MAPs exhibit controlled elution of drug in vitro. Transdermal application of DXM-loaded MAPs in a murine tibial fracture model leads to substantial relief of postoperative pain. Pharmacokinetic analysis shows that MAP administration is able to control pain at a significantly lower dose than intravenous administration. This work expands the material properties of 3D-printed poly(propylene fumarate-co-propylene succinate) copolyesters and their use in drug delivery applications.

4.
Angew Chem Int Ed Engl ; 63(33): e202407794, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38896057

ABSTRACT

Vat photopolymerization 3D printing has proven very successful for the rapid additive manufacturing (AM) of polymeric parts at high resolution. However, the range of materials that can be printed and their resulting properties remains narrow. Herein, we report the successful AM of a series of poly(carbonate-b-ester-b-carbonate) elastomers, derived from carbon dioxide and bio-derived ϵ-decalactone. By employing a highly active and selective Co(II)Mg(II) polymerization catalyst, an ABA triblock copolymer (Mn=6.3 kg mol-1, ÐM=1.26) was synthesized, formulated into resins which were 3D printed using digital light processing (DLP) and a thiol-ene-based crosslinking system. A series of elastomeric and degradable thermosets were produced, with varying thiol cross-linker length and poly(ethylene glycol) content, to produce complex triply periodic geometries at high resolution. Thermomechanical characterization of the materials reveals printing-induced microphase separation and tunable hydrophilicity. These findings highlight how utilizing DLP can produce sustainable materials from low molar mass polyols quickly and at high resolution. The 3D printing of these functional materials may help to expedite the production of sustainable plastics and elastomers with potential to replace conventional petrochemical-based options.

5.
J Am Chem Soc ; 146(21): 14705-14714, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38749060

ABSTRACT

Hydrogel microparticles (HMPs) have been investigated widely for their use in tissue engineering and drug delivery applications. However, translation of these highly tunable systems has been hindered by covalent cross-linking methods within microparticles. Stereocomplexation, a stereospecific form of physical cross-linking, provides a robust yet degradable alternative for creating translationally relevant HMPs. Herein, 4-arm polyethylene glycol (PEG) stars were used as macromolecular initiators from which oligomeric poly(l-lactic acid) (PLLA) was polymerized with a degree of polymerization (DPn) of 20 on each arm. Similarly, complementary propargyl-containing ABA cross-linkers with enantiomeric poly(d-lactic acid) (PDLA) segments (DPn = 20) on each arm. Droplets of these gel precursors were formed via a microfluidic organic-in-oil-in-water system where microparticles self-assembled via stereocomplexation and were stabilized after precipitation in deionized water. By varying the flow rate of the dispersed phase, well-defined microparticles with diameters of 33.7 ± 0.5, 62.4 ± 0.6, and 105.7 ± 0.8 µm were fabricated. Gelation due to stereocomplexation was confirmed via wide-angle X-ray scattering in which HMPs exhibited the signature diffraction pattern of stereocomplexed PLA at 2θ = 12.2, 21.2, 24.2°. Differential scanning calorimetry also confirmed stereocomplexation by the appearance of a crystallization exotherm (Tc = 37 °C) and a high-temperature endotherm (Tm = 159 °C) that does not appear in the homocrystallization of PLLA or the hydrogel precursors. Additionally, the propargyl handle present on the cross-linker allows for pre- or post-assembly thiol-yne "click" functionalization as demonstrated by the addition of thiol-containing fluorophores to the HMPs.

6.
Biotechnol Bioeng ; 121(4): 1284-1297, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240126

ABSTRACT

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.


Subject(s)
Antibodies, Monoclonal , Proteomics , Cricetinae , Animals , Cricetulus , Proteomics/methods , CHO Cells , Antibodies, Monoclonal/chemistry , Chromatography, Gel , Staphylococcal Protein A/chemistry
7.
Nat Commun ; 14(1): 7299, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37949871

ABSTRACT

Resorbable, implantable bioelectronic devices are emerging as powerful tools to reliably monitor critical physiological parameters in real time over extended periods. While degradable magnesium-based electronics have pioneered this effort, relatively short functional lifetimes have slowed clinical translation. Barrier films that are both flexible and resorbable over predictable timelines would enable tunability in device lifetime and expand the viability of these devices. Herein, we present a library of stereocontrolled succinate-based copolyesters which leverage copolymer composition and processing method to afford tunability over thermomechanical, crystalline, and barrier properties. One copolymer composition within this library has extended the functional lifetime of transient bioelectronic prototypes over existing systems by several weeks-representing a considerable step towards translational devices.


Subject(s)
Electronics , Polymers , Polymers/chemistry
8.
Anal Chim Acta ; 1283: 341963, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37977787

ABSTRACT

Polymer thin films are often used in transdermal patches as a method of continuous drug administration for patients with chronic illness. Understanding the drug segregation and distribution within these films is important for monitoring proper drug release over time. Surface-layer matrix-assisted laser desorption/ionization mass spectrometry imaging (SL-MALDI-MSI) is a unique analytical technique that provides an optical representation of chemical compositions that exist at the surface of polymeric materials. Solvent-free sublimation is employed for application of matrix to the sample surface, so that only molecules in direct contact with the matrix layer are detected. Here, these methodologies are utilized to visualize variations in drug concentration at both the air and substrate interface in pharmaceutical-loaded polymer films.


Subject(s)
Polymers , Urea , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Pharmaceutical Preparations , Lasers
9.
Nat Commun ; 14(1): 4838, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563117

ABSTRACT

Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.


Subject(s)
Biocompatible Materials , Polymers
10.
Adv Mater ; 35(41): e2302163, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37399511

ABSTRACT

Most elastomers undergo strain-induced crystallization (SIC) under tension; as individual chains are held rigidly in a fixed position by an applied strain, their alignment along the strain field results in a shift from strain-hardening (SH) to SIC. A similar degree of stretching is associated with the tension necessary to accelerate mechanically coupled, covalent chemical responses of mechanophores in overstretched chains, raising the possibility of an interplay between the macroscopic response of SIC and the molecular response of mechanophore activation. Here, thiol-yne-derived stereoelastomers doped covalently with a dipropiolate-derivatized spiropyran (SP) mechanophore (0.25-0.38 mol%) are reported. The material properties of SP-containing films are consistent with undoped controls, indicating that the SP is a reporter of the mechanical state of the polymer. Uniaxial tensile tests reveal correlations between mechanochromism and SIC, which are strain-rate-dependent. When mechanochromic films are stretched slowly to the point of mechanophore activation, the covalently tethered mechanophore remains trapped in a force-activated state, even after the applied stress is removed. Mechanophore reversion kinetics correlate with the applied strain rate, resulting in highly tunable decoloration rates. Because these polymers are not covalently crosslinked, they are recyclable by melt-pressing into new films, increasing their potential range of strain-sensing, morphology-sensing, and shape-memory applications.

11.
J Funct Biomater ; 14(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37504845

ABSTRACT

The objective of this research was to create and appraise biodegradable polymer-based nanofibers containing distinct concentrations of calcium trimetaphosphate (Ca-TMP) for periodontal tissue engineering. Poly(ester urea) (PEU) (5% w/v) solutions containing Ca-TMP (15%, 30%, 45% w/w) were electrospun into fibrous scaffolds. The fibers were evaluated using SEM, EDS, TGA, FTIR, XRD, and mechanical tests. Degradation rate, swelling ratio, and calcium release were also evaluated. Cell/Ca-TMP and cell/scaffold interaction were assessed using stem cells from human exfoliated deciduous teeth (SHEDs) for cell viability, adhesion, and alkaline phosphatase (ALP) activity. Analysis of variance (ANOVA) and post-hoc tests were used (α = 0.05). The PEU and PEU/Ca-TMP-based membranes presented fiber diameters at 469 nm and 414-672 nm, respectively. Chemical characterization attested to the Ca-TMP incorporation into the fibers. Adding Ca-TMP led to higher degradation stability and lower dimensional variation than the pure PEU fibers; however, similar mechanical characteristics were observed. Minimal calcium was released after 21 days of incubation in a lipase-enriched solution. Ca-TMP extracts enhanced cell viability and ALP activity, although no differences were found between the scaffold groups. Overall, Ca-TMP was effectively incorporated into the PEU fibers without compromising the morphological properties but did not promote significant cell function.

12.
Front Cell Dev Biol ; 11: 1155882, 2023.
Article in English | MEDLINE | ID: mdl-37255596

ABSTRACT

Cell migration plays an essential role in physiological and pathological states, such as immune response, tissue generation and tumor development. This phenomenon can occur spontaneously or it can be triggered by an external stimuli, including biochemical, mechanical, or electrical cues that induce or direct cells to migrate. The migratory response to these cues is foundational to several fields including neuroscience, cancer and regenerative medicine. Various platforms are available to qualitatively and quantitatively measure cell migration, making the measurements of cell motility straight-forward. Migratory behavior must be analyzed by multiple metrics and then models to connect the measurements to physiological meaning. This review will focus on describing and quantifying cell movement for individual cell migration.

13.
Biomaterials ; 292: 121940, 2023 01.
Article in English | MEDLINE | ID: mdl-36493714

ABSTRACT

Intraperitoneal adhesions (IAs) are a major complication arising from abdominal repair surgeries, including hernia repair procedures. Herein, we fabricated a composite mesh device using a macroporous monofilament polypropylene mesh and a degradable elastomer coating designed to meet the requirements of this clinical application. The degradable elastomer was synthesized using an organo-base catalyzed thiol-yne addition polymerization that affords independent control of degradation rate and mechanical properties. The elastomeric coating was further enhanced by the covalent tethering of antifouling zwitterion molecules. Mechanical testing demonstrated the elastomer forms a robust coating on the polypropylene mesh does not exhibit micro-fractures, cracks or mechanical delamination under cyclic fatigue testing that exceeds peak abdominal loads (50 N/cm). Quartz crystal microbalance measurements showed the zwitterionic functionalized elastomer further reduced fibrinogen adsorption by 73% in vitro when compared to unfunctionalized elastomer controls. The elastomer exhibited degradation with limited tissue response in a 10-week murine subcutaneous implantation model. We also evaluated the composite mesh in an 84-day study in a rabbit cecal abrasion hernia adhesion model. The zwitterionic composite mesh significantly reduced the extent and tenacity of IAs by 94% and 90% respectively with respect to uncoated polypropylene mesh. The resulting composite mesh device is an excellent candidate to reduce complications related to abdominal repair through suppressed fouling and adhesion formation, reduced tissue inflammation, and appropriate degradation rate.


Subject(s)
Polypropylenes , Surgical Mesh , Rabbits , Mice , Animals , Surgical Mesh/adverse effects , Adhesives , Elastomers , Absorbable Implants , Tissue Adhesions/prevention & control , Tissue Adhesions/etiology , Hernia/prevention & control
14.
Biotechnol Bioeng ; 120(4): 1068-1080, 2023 04.
Article in English | MEDLINE | ID: mdl-36585356

ABSTRACT

In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.


Subject(s)
Biological Products , Protein Aggregates , Cricetinae , Animals , Humans , Cricetulus , Antibodies, Monoclonal , Proteomics/methods , CHO Cells
15.
Nat Commun ; 13(1): 6518, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316354

ABSTRACT

Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies.


Subject(s)
Absorbable Implants , Electronics , Semiconductors , Electrodes , Lasers
16.
Nanoscale ; 14(45): 16845-16856, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36331392

ABSTRACT

Printed carbon nanotube thin-film transistors (CNT-TFTs) are candidates for flexible electronics with printability on a wide range of substrates. Among the layers comprising a CNT-TFT, the gate dielectric has proven most difficult to additively print owing to challenges in film uniformity, thickness, and post-processing requirements. Printed ionic dielectrics show promise for addressing these issues and yielding devices that operate at low voltages thanks to their high-capacitance electric double layers. However, the printing of ionic dielectrics in their various compositions is not well understood, nor is the impact of certain stresses on these materials. In this work, we studied three compositionally distinct ionic dielectrics in fully printed CNT-TFTs: the polar-fluorinated polymer elastomer PVDF-HFP; an ion gel consisting of triblock polymer PS-PMMA-PS and ionic liquid EMIM-TFSI; and crystalline nanocellulose (CNC) with a salt concentration of 0.05%. Although ion gel has been thoroughly studied, e-PVDF-HFP and CNC printing are relatively new and this study provides insights into their ink formulation, print processing, and performance as gate dielectrics. Using a consistent aerosol jet printing approach, each ionic dielectric was printed into similar CNT-TFTs, allowing for direct comparison through extensive characterization, including mechanical and electrical stress tests. The ionic dielectrics were found to have distinct operational dependencies based on their compositional and ionic attributes. Overall, the results reveal a number of trade-offs that must be managed when selecting a printable ionic dielectric, with CNC showing the strongest performance for low-voltage operation but the ion gel and elastomer exhibiting better stability under bias and mechanical stresses.

17.
ACS Appl Mater Interfaces ; 14(34): 38436-38447, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35977091

ABSTRACT

Poly(propylene fumarate) star polymers photochemically 3D printed with degradable thiol cross-linkers yielded highly tunable biodegradable polymeric materials. Tailoring the alkene:thiol ratio (5:1, 10:1, 20:1 and 30:1) and thus the cross-link density within the PPF star systems yielded a wide variation of both the mechanical and degradation properties of the printed materials. Fundamental trends were established between the polymer network cross-link density, glass transition temperature, and tensile and thermomechanical properties of the materials. The tensile properties of the PPF star-based systems were compared to commercial state-of-the-art non-degradable polymer resins. The thiolene-cross-linked materials are fully degradable and possess properties over a wide range of mechanical properties relevant to regenerative medicine applications.

18.
Biomacromolecules ; 23(6): 2635-2646, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35656981

ABSTRACT

Peripheral nerve regeneration across large gaps remains clinically challenging and scaffold design plays a key role in nerve tissue engineering. One strategy to encourage regeneration has utilized nanofibers or conduits to exploit contact guidance within the neural regenerative milieu. Herein, we report the effect of nanofiber topography on two key aspects of regeneration: Schwann cell migration and neurite extension. Substrates possessing distinct diameter distributions (300 ± 40 to 900 ± 70 nm) of highly aligned poly(ε-caprolactone) nanofibers were fabricated by touch-spinning. Cell migratory behavior and contact guidance were then evaluated both at the tissue level using dorsal root ganglion tissue explants and the cellular level using dissociated Schwann cells. Explant studies showed that Schwann cells emigrated significantly farther on fibers than control. However, both Schwann cells and neurites emigrated from the tissue explants directionally along the fibers regardless of their diameter, and the data were characterized by high variation. At the cellular level, dissociated Schwann cells demonstrated biased migration in the direction of fiber alignment and exhibited a significantly higher biased velocity (0.2790 ± 0.0959 µm·min-1) on 900 ± 70 nm fibers compared to other nanofiber groups and similar to the velocity found during explant emigration on 900 nm fibers. Therefore, aligned, nanofibrous scaffolds of larger diameters (900 ± 70 nm) may be promising materials to enhance various aspects of nerve regeneration via contact guidance alone. While cells track along with the fibers, this contact guidance is bidirectional along the fiber, moving in the plane of alignment. Therefore, the next critical step to direct regeneration is to uncover haptotactic cues that enhance directed migration.


Subject(s)
Nanofibers , Ganglia, Spinal , Nanofibers/chemistry , Nerve Regeneration , Schwann Cells , Tissue Engineering , Tissue Scaffolds/chemistry , Touch
19.
Biomacromolecules ; 23(6): 2388-2395, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35512280

ABSTRACT

Additive manufacturing is rapidly advancing tissue engineering, but the scope of its clinical translation is limited by a lack of materials designed to meet specific mechanical properties and resorption timelines. Materials that are printable via photochemical cross-linking, fully degradable, and elastomeric have proven to be particularly challenging to develop. Herein, we report the synthesis of a series of poly(propylene fumarate-b-γ-methyl-ε-caprolactone-b-propylene fumarate) ABA triblock polymers using sequential ring-opening polymerization and ring-opening copolymerization. When cross-linked photochemically using a continuous liquid interface production digital light processing Carbon M2 printer, these ABA-type triblock copolymers are durable elastomers with tunable degradation and elastic properties. The polymers are shown to undergo slow, hydrolytic degradation in vitro with minimal loss of mechanical performance during degradation.


Subject(s)
Biocompatible Materials , Elastomers , Biocompatible Materials/chemistry , Elastomers/chemistry , Fumarates , Polymers/chemistry , Polypropylenes
SELECTION OF CITATIONS
SEARCH DETAIL